Abstract. Results from an intercomparison campaign of ultraviolet spectroradiometers that was organized at Nea Michaniona, Greece July, 1-13 1997, are presented. Nineteen instrument systems from 15 different countries took part and provided spectra of global solar UV irradiance for two consecutive days from sunrise to sunset every half hour. No data exchange was allowed between participants in order to achieve absolutely independent results among the instruments. The data analysis procedure included the determination of wavelength shifts and the application of suitable corrections to the measured spectra, their standardization to common spectral resolution of 1 nm full width at half maximum and the application of cosine corrections. Reference spectra were calculated for each observational time, derived for a set of instruments which were objectively selected and used as comparison norms for the assessment of the relative agreement among the various instruments. With regard to the absolute irradiance measurements, the range of the deviations from the reference for all spectra was within ñ20%. About half of the instruments agreed to within ñ5%, while only three fell outside the ñ 10% agreement limit. As for the accuracy of the wavelength registration of the recorded spectra, for most of the spectroradiometers (14) the calculated wavelength shifts were smaller than 0.2 nm. The overall outcome of the campaign was very encouraging, as it was proven that the agreement among the majority of the instruments was good and comparable to the commonly accepted uncertainties of spectral UV measurements. In addition, many of the instruments provided consistent results relative to at least the previous two intercomparison campaigns, held in 1995 in Ispra, Italy and in 1993 in Garmisch-Partenkirchen, Germany. As a result of this series of intercomparison campaigns, several of the currently operating spectroradiometers operating may be regarded as a core group of instruments, which with the employment of proper operational procedures are capable of providing quality spectral solar UV measurements.
The diurnal and annual variability of solar UV radiation in Europe is described for different latitudes, seasons and different biologic weighting functions. For the description of this variability under cloudless skies the widely used one-dimensional version of the radiative transfer model UVSPEC is used. We reconfirm that the major factor influencing the diurnal and annual variability of UV irradiance is solar elevation. While ozone is a strong absorber of UV radiation its effect is relatively constant when compared with the temporal variability of clouds. We show the significant role that clouds play in modifying the UV climate by analyzing erythemal irradiance measurements from 28 stations in Europe in summer. On average, the daily erythemal dose under cloudless skies varies between 2.2 kJ m(-2) at 70 degrees N and 5.2 kJ m(-2) at 35 degrees N, whereas these values are reduced to 1.5-4.5 kJ m(-2) if clouds are included. Thus clouds significantly reduce the monthly UV irradiation, with the smallest reductions, on average, at lower latitudes, which corresponds to the fact that it is often cloudless in the Mediterranean area in summer.
The NERC Science Information Strategy Data Citation and Publication project aims to develop and formalise a method for formally citing and publishing the datasets stored in its environmental data centres. It is believed that this will act as an incentive for scientists, who often invest a great deal of effort in creating datasets, to submit their data to a suitable data repository where it can properly be archived and curated. Data citation and publication will also provide a mechanism for data producers to receive credit for their work, thereby encouraging them to share their data more freely.
Precipitation of energetic electrons to the atmosphere is both a loss mechanism for radiation belt particles and a means by which the geospace environment influences the Earth's atmosphere; thus, it is important to fully understand the extent of this precipitation. A set of polar orbiting satellites have been used to identify periods when energetic charged particles fill the slot region between the inner and outer radiation belts. These suggest that electrons with energies >30 keV penetrate this region, even under levels of modest geomagnetic activity. Those events with sufficient fluxes of particles produce enough ionization to be detected by a ground‐based radar in Antarctica; this precipitation lasts for ~10 days on average. Analysis of these data reveals that the average precipitation penetrates to the stratopause (~55‐km altitude). For some (if not all) of these events, the likely cause of the most energetic precipitation is an interaction between (relativistic) electrons and plasmaspheric hiss leading to little, if no, local time variation in precipitation. This does not preclude a longitudinal effect given that all radar measurements are fixed in longitude. During winter months the radar is under the stable southern polar atmospheric vortex. This transports atmospheric species to lower altitudes including the ozone destroying chemicals that are produced by energetic precipitation. Thus, the precipitation from the slot region in the Southern Hemisphere will likely contribute to the destruction of ozone and changes to atmospheric heat balance and chemistry; more work is required to determine the true impact of these events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.