1. Amiodarone (AMI) is a potent anti-arrhythmic drug and mono-N-desethylamiodarone (MDEA) is its only known metabolite. It was found recently that in rabbit liver microsomes MDEA was biotransformed to n-3-hydroxybutyl-MDEA (3OH-MDEA). 2. In liver microsomes isolated from the untreated rabbit, the formation of 3OH-MDEA obeyed Michaelis-Menten enzyme kinetics with Km = 6.39 +/- 1.07 microM and Vmax = 0.56 +/- 0.21 nmolmin(-1) mg(-1) protein. 3. Furthermore, (1) among chemicals usually used as inhibitors of cytochrome P450, only midazolam (MDZ), cyclosporin A and ketoconazole inhibited the MDEA hydroxylase activity significantly (>60% inhibition), (2) MDZ, a substrate of CYP3A, inhibited the 30OH-MDEA formation competitively (Ki = 10 +/- 5 microM), (3) the formation rates of 3OH-MDEA correlated positively with those of 1'OH-MDZ (r = 0.81; n = 6), and (4) MDEA hydroxylase activity of microsomes isolated from rabbit rifampicin-induced cultured hepatocytes was 4-fold more active than the control. 4. Since CYP3A6 is mainly induced by rifampicin in rabbit-cultured hepatocytes, the data suggest that this isoform is involved in the biotransformation of MDEA to 3OH-MDEA. 5. Since alpha-naphthoflavone, cimetidine and quinidine also partially inhibited the MDEA hydroxylase activity, it is possible that other CYPs, such as 1A, 2C and 2D, may also be active in the metabolism of amiodarone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.