The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the aminoterminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.
In Escherichia coli, the Tat system promotes the membrane translocation of a subset of exported proteins across the cytoplasmic membrane. Four genes (tatA, tatB, tatC, and tatE) have been identified that encode the components of the E. coli Tat translocation apparatus. Whereas TatA and TatE can functionally substitute for each other, the TatB and the TatC proteins have been shown to perform distinct functions. In contrast to Tat systems of the ABC(E) type found in E. coli and many other bacteria, some microorganisms possess a TatACtype translocase that consists of TatA and TatC only, suggesting that, in these systems, TatB is not required or that one of the remaining components (TatA or TatC) additionally takes over the TatB function. We have addressed the molecular basis for the difference in subunit composition between TatABC(E) and TatAC-type systems by using a genetic approach. A plasmid-encoded E. coli minimal Tat translocase consisting solely of TatA and TatC was shown to mediate a low level translocation of a sensitive Tat-dependent reporter protein. Suppressor mutations in the minimal Tat translocase were isolated that compensate for the absence of TatB and that showed substantial increases in translocation activities. All of the mutations mapped to the extreme amino-terminal domain of TatA. No mutations affecting TatC were identified. These results suggest that in TatAC-type systems, the TatA protein represents a bifunctional component fulfilling both the TatA and TatB functions. Furthermore, our results indicate that the structure of the amino-terminal domain of TatA is decisive for whether or not TatB is required.Transport of proteins across biological membranes is a crucial process in all living cells. In eubacteria, the translocation of the vast majority of proteins across the plasma membrane is mediated by the general protein secretion (Sec) system, consisting of a protein-conducting channel (SecYEG) and a translocation motor (SecA). Sec-dependent proteins are threaded through the SecYEG pore in a more or less unfolded state and only fold after their release on the trans-side of the membrane (for a recent review, see Ref. 1).In addition to the Sec machinery, many bacteria possess a second protein export system, the so-called Tat (twin arginine translocation) system, for the translocation of a subset of proteins. In marked contrast to the Sec system, the Tat machinery translocates its substrates in a fully folded or even oligomeric state (for reviews, see Refs. 2-5). The Tat export machinery consists of a surprisingly low number of components. In Escherichia coli, four genes (tatA, tatB, tatC, and tatE) have been identified that encode components of the Tat translocation apparatus (6, 7). TatA, TatB, and TatE are sequence-related proteins. TatA and TatE show more than 50% sequence identity and can partially substitute for each other functionally (7). However, because the tatA gene is expressed about 100 times higher than tatE, the latter gene is currently regarded as a cryptic gene duplication of ta...
In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the "Sec avoidance signal," the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.
The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D +2 )-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D +2 ) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D +2 )-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.