Planting non-native tree species, like Douglas fir in temperate European forest systems, is encouraged to mitigate effects of climate change. However, Douglas fir monocultures often revealed negative effects on forest biota, while effects of mixtures with native tree species on forest ecosystems are less well understood. We investigated effects of three tree species (Douglas fir, Norway spruce, native European beech), on ground beetles in temperate forests of Germany. Beetles were sampled in monocultures of each tree species and broadleaf-conifer mixtures with pitfall traps, and environmental variables were assessed around each trap. We used linear mixed models in a two-step procedure to disentangle effects of environment and tree species identity on ground beetle abundance, species richness, functional diversity and species assemblage structure. Contradictory to our expectations, ground beetle abundance and functional diversity was highest in pure Douglas fir stands, while tree mixtures showed intermediate values between pure coniferous and pure beech stands. The main drivers of these patterns were only partially dependent on tree species identity, which highlights the importance of structural features in forest stands. However, our study revealed distinct shifts in assemblage structure between pure beech and pure Douglas fir stands, which were only partially eased through mixture planting. Our findings suggest that effects of planting non-native trees on associated biodiversity can be actively modified by promoting beneficial forest structures. Nevertheless, integrating non-native tree species, even in mixtures with native trees, will invariably alter assemblage structures of associated biota, which can compromise conservation efforts targeted at typical species composition.
Background Functional diversity is vital for forest ecosystem resilience in times of climate-induced forest diebacks. Admixing drought resistant non-native Douglas fir, as a partial replacement of climate-sensitive Norway spruce, to native beech forests in Europe appears promising for forest management, but possible consequences for associated biota and ecosystem functioning are poorly understood. To better link forest management and functional diversity of associated biota, we investigated the trophic niches (∆13C, ∆15N) of epigeic generalist predators (spiders and ground beetles) in mixed and pure stands of European beech, Norway spruce and non-native Douglas fir in north-west Germany. We assessed the multidimensional niche structure of arthropod predator communities using community-based isotopic metrics. Results Whilst arthropod ∆13C differed most between beech (high ∆13C) and coniferous stands (low ∆13C), ∆15N was lowest in non-native Douglas fir. Tree mixtures mitigated these effects. Further, conifers increased isotopic ranges and isotopic richness, which is linked to higher canopy openness and herb complexity. Isotopic divergence of ground beetles decreased with Douglas fir presence, and isotopic evenness of spiders in Douglas fir stands was lower in loamy sites with higher precipitation than in sandy, drier sites. Conclusions We conclude that tree species and particularly non-native trees alter the trophic niche structure of generalist arthropod predators. Resource use and feeding niche breadth in non-native Douglas fir and native spruce differed significantly from native beech, with more decomposer-fueled and narrower feeding niches in beech stands (∆13C, isotopic ranges and richness). Arthropod predators in non-native Douglas fir, however, had shorter (∆15N) and simplified (isotopic divergence) food chains compared to native forest stands; especially under beneficial abiotic conditions (isotopic evenness). These findings indicate potential adverse effects of Douglas fir on functional diversity of generalist arthropod predators. As tree mixtures mitigated differences between beech and conifers, mixed stands including (non-native) conifers constitute a promising compromise between economic and conservational interests.
Increasing demand for biomass has led to an on-going intensification of fuel wood plantations with possible negative effects on open land biodiversity. Hence, ecologists increasingly call for measures that reduce those negative effects on associated biodiversity. However, our knowledge about the efficiency of such measures remains scarce. 2 We investigated the effects of gap implementation in short rotation coppices (SRCs) on carabid diversity and assemblage composition over 3 years, with pitfall traps in gaps, edges and interiors. In parallel, we quantified soil surface temperature, shrub-and herb cover. 3 Edges had the highest number of species and abundances per trap, whereas rarefied species richness was significantly lower in short rotation coppice interiors than in other habitat types. Carabid community composition differed significantly between habitat types. The main environmental drivers were temperature for number of species and abundance and shrub cover for rarefied species richness. 4 We found significantly higher rarefied species richness in gaps compared with interiors. Hence, we argue that gap implementation benefits overall diversity in short rotation coppices. Furthermore, the differences in species community composition between habitat types through increased species turnover support carabid diversity in short rotation coppices. These positive effects were largely attributed to microclimate conditions. However, to maintain positive effects, continuous management of herb layer might be necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.