Kidney toxicity accounts for a significant percentage of morbidity and drug candidate failure. Serum creatinine (SCr) and blood urea nitrogen (BUN) have been used to monitor kidney dysfunction for over a century but these markers are insensitive and non-specific. In multi-site preclinical rat toxicology studies the diagnostic performance of urinary kidney injury molecule-1 (Kim-1) was compared to traditional biomarkers as predictors of kidney tubular histopathologic changes, currently considered the “gold standard” of nephrotoxicity. In multiple models of kidney injury, urinary Kim-1 significantly outperformed SCr and BUN. The area under the receiver operating characteristic curve for Kim-1 was between 0.91 and 0.99 as compared to 0.79 to 0.9 for BUN and 0.73 to 0.85 for SCr. Thus urinary Kim-1 is the first injury biomarker of kidney toxicity qualified by the FDA and EMEA and is expected to significantly improve kidney safety monitoring.
Numerous studies have examined how the cellular delivery of gold nanoparticles (AuNPs) is influenced by different physical and chemical characteristics; however, the complex relationship between AuNP size, uptake efficiency and intracellular localization remains only partially understood. Here we examine the cellular uptake of a series of AuNPs ranging in diameter from 2.4 to 89 nm that are synthesized and made soluble with poly(ethylene glycol)-functionalized dithiolane ligands terminating in either carboxyl or methoxy groups and covalently conjugated to cell penetrating peptides. Following synthesis, extensive physical characterization of the AuNPs was performed with UV-vis absorption, gel electrophoresis, zeta potential, dynamic light scattering, and high resolution transmission electron microscopy. Uptake efficiency and intracellular localization of the AuNP-peptide conjugates in a model COS-1 cell line were probed with a combination of silver staining, fluorescent counterstaining, and dual mode fluorescence coupled to nonfluorescent scattering. Our findings show that AuNP cellular uptake is directly dependent on the surface display of the cell-penetrating peptide and that the ultimate intracellular destination is further determined by AuNP diameter. The smallest 2.4 nm AuNPs were found to localize in the nucleus, while intermediate 5.5 and 8.2 nm particles were partially delivered into the cytoplasm, showing a primarily perinuclear fate along with a portion of the nanoparticles appearing to remain at the membrane. The 16 nm and larger AuNPs did not enter the cells and were located at the cellular periphery. A preliminary assessment of cytotoxicity demonstrated minimal effects on cellular viability following peptide-mediated uptake.
The first formal qualification of safety biomarkers for regulatory decision making marks a milestone in the application of biomarkers to drug development. Following submission of drug toxicity studies and analyses of biomarker performance to the Food and Drug Administration (FDA) and European Medicines Agency (EMEA) by the Predictive Safety Testing Consortium's (PSTC) Nephrotoxicity Working Group, seven renal safety biomarkers have been qualified for limited use in nonclinical and clinical drug development to help guide safety assessments. This was a pilot process, and the experience gained will both facilitate better understanding of how the qualification process will probably evolve and clarify the minimal requirements necessary to evaluate the performance of biomarkers of organ injury within specific contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.