Abstract. Let N > 1. We present a method for multiplying two integers (called N-residues) modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so this method is useful only if several computations are done modulo one N. The addition and subtraction algorithms are unchanged. To validate REDC, observe mN = TN'N = -Tmod R, so t is an integer. Also, tR = Tmod N so t = TR'X mod N. Thirdly, 0 < T + mN < RN + RN, so 0 < t < 2N.If R and N are large, then T + mN may exceed the largest double-precision value. One can circumvent this by adjusting m so -R < m < 0.Given two numbers x and y between 0 and N -1 inclusive, let z = REDC(xy). Then z = (xy)R~x mod N, so (xR-l)(yR~x) = zRx mod N. Also, 0 < z < N, so z is the product of x and y in this representation.Other algorithms for operating on N-residues in this representation can be derived from the algorithms normally used. The addition algorithm is unchanged, since xR~x + yR~x = zR~x mod N if and only if x + y = z mod N. Also unchanged are
Abstract. Let N > 1. We present a method for multiplying two integers (called N-residues) modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so this method is useful only if several computations are done modulo one N. The addition and subtraction algorithms are unchanged. To validate REDC, observe mN = TN'N = -Tmod R, so t is an integer. Also, tR = Tmod N so t = TR'X mod N. Thirdly, 0 < T + mN < RN + RN, so 0 < t < 2N.If R and N are large, then T + mN may exceed the largest double-precision value. One can circumvent this by adjusting m so -R < m < 0.Given two numbers x and y between 0 and N -1 inclusive, let z = REDC(xy). Then z = (xy)R~x mod N, so (xR-l)(yR~x) = zRx mod N. Also, 0 < z < N, so z is the product of x and y in this representation.Other algorithms for operating on N-residues in this representation can be derived from the algorithms normally used. The addition algorithm is unchanged, since xR~x + yR~x = zR~x mod N if and only if x + y = z mod N. Also unchanged are
Abstract. Since 1974, several algorithms have been developed that attempt to factor a large number N by doing extensive computations modulo N and occasionally taking GCDs with N. These began with Pollard's p -1 and Monte Carlo methods. More recently, Williams published a p + 1 method, and Lenstra discovered an elliptic curve method (ECM). We present ways to speed all of these. One improvement uses two tables during the second phases of p ± 1 and ECM, looking for a match. Polynomial preconditioning lets us search a fixed table of size n with n/2 + o(n) multiplications. A parametrization of elliptic curves lets Step 1 of ECM compute the x-coordinate of nP from that of P in about 9.3 log2 n multiplications for arbitrary P.
Abstract. Since 1974, several algorithms have been developed that attempt to factor a large number N by doing extensive computations modulo N and occasionally taking GCDs with N. These began with Pollard's p -1 and Monte Carlo methods. More recently, Williams published a p + 1 method, and Lenstra discovered an elliptic curve method (ECM). We present ways to speed all of these. One improvement uses two tables during the second phases of p ± 1 and ECM, looking for a match. Polynomial preconditioning lets us search a fixed table of size n with n/2 + o(n) multiplications. A parametrization of elliptic curves lets Step 1 of ECM compute the x-coordinate of nP from that of P in about 9.3 log2 n multiplications for arbitrary P.
Abstract. This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.