We present a rapid, reproducible and sensitive neurotoxicity testing platform that combines the benefits of neurite outgrowth analysis with cell patterning. This approach involves patterning neuronal cells within a hexagonal array to standardize the distance between neighbouring cellular nodes, and thereby standardize the length of the neurite interconnections. This feature coupled with defined assay coordinates provides a streamlined display for rapid and sensitive analysis. We have termed this the network formation assay (NFA). To demonstrate the assay we have used a novel cell patterning technique involving thin film poly(dimethylsiloxane) (PDMS) microcontact printing. Differentiated human SH-SY5Y neuroblastoma cells colonized the array with high efficiency, reliably producing pattern occupancies above 70%. The neuronal array surface supported neurite outgrowth, resulting in the formation of an interconnected neuronal network. Exposure to acrylamide, a neurotoxic reference compound, inhibited network formation. A dose-response curve from the NFA was used to determine a 20% network inhibition (NI(20)) value of 260 microM. This concentration was approximately 10-fold lower than the value produced by a routine cell viability assay, and demonstrates that the NFA can distinguish network formation inhibitory effects from gross cytotoxic effects. Inhibition of the mitogen-activated protein kinase (MAPK) ERK1/2 and phosphoinositide-3-kinase (PI-3K) signaling pathways also produced a dose-dependent reduction in network formation at non-cytotoxic concentrations. To further refine the assay a simulation was developed to manage the impact of pattern occupancy variations on network formation probability. Together these developments and demonstrations highlight the potential of the NFA to meet the demands of high-throughput applications in neurotoxicology and neurodevelopmental biology.
Tip‐enhanced Raman spectroscopy is used as a label‐free, nondestructive method for the direct mapping of nanometer‐sized lipid and protein domains on the surface of a single cell (see graphic). Spectral unmixing allows the analysis and visualization of the different cellular surface components down to a spatial resolution of 10–20 nm.
Raman spectroscopy provides chemical-rich information about the composition of analytes and is a powerful tool for biological studies. With the ability to investigate specific cellular components or image whole cells, compatible methods of sample preservation must be implemented for accurate spectra to be collected. Unfortunately, the effects of many commonly used sample preservation methods have not been explored with cultured cells. In this study, two human cell lineages of varying phenotypes were used to investigate the effects of sample preservation methods. Cells were cultured directly onto quartz substrates and either formalin-fixed, desiccated or air dried. The results indicate that the methodology applied to cell cultures for Raman analysis significantly influences the quality and reproducibility of the resulting spectral data. Formalin fixation was not found to be as universally efficient as anticipated for a commonly used fixative. This was due largely to the inconsistency in sample preservation between cell lines and loss of signal intensity. Sample air-drying was found to be largely inconsistent in terms of spectral reproducibility. Our study shows that sample desiccation displayed good spectral reproducibility and resulted in a good signal-to-noise ratio. Lipid and protein content in both activated and inactivated cells were maintained and provided a more controlled method compared with air-drying, revealing that the speed of drying is important for sample preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.