Countless numbers of people lost their lives at Europe’s southern borders in recent years in the attempt to cross to Europe in small rubber inflatables. This work examines satellite-based approaches to build up future systems that can automatically detect those boats. We compare the performance of several automatic vessel detectors using real synthetic aperture radar (SAR) data from X-band and C-band sensors on TerraSAR-X and Sentinel-1. The data was collected in an experimental campaign where an empty boat lies on a lake’s surface to analyse the influence of main sensor parameters (incidence angle, polarization mode, spatial resolution) on the detectability of our inflatable. All detectors are implemented with a moving window and use local clutter statistics from the adjacent water surface. Among tested detectors are well-known intensity-based (CA-CFAR), sublook-based (sublook correlation) and polarimetric-based (PWF, PMF, PNF, entropy, symmetry and iDPolRAD) approaches. Additionally, we introduced a new version of the volume detecting iDPolRAD aimed at detecting surface anomalies and compare two approaches to combine the volume and the surface in one algorithm, producing two new highly performing detectors. The results are compared with receiver operating characteristic (ROC) curves, enabling us to compare detectors independently of threshold selection.
Most of the recent research in the field of marine target detection has been concentrating on ships with large metallic parts. The focus of this work is on much more challenging targets represented by small rubber inflatables. They are of importance, since in recent years they have largely been used by migrants to cross the Mediterranean Sea between Libya and Europe. The motivation of this research is to mitigate the ongoing humanitarian crisis at Europe’s southern borders. These boats, packed with up to 200 people, are in no way suitable to cross the Mediterranean Sea or any other big water body and are in distress from the moment of departure. The establishment of a satellite-based surveillance infrastructure could considerably support search and rescue missions in the Mediterranean Sea, reduce the number of such boats being missed and mitigate the ongoing death in the open ocean. In this work we describe and analyze data from the InflateSAR acquisition campaign, wherein we gathered multiple-platform SAR imagery of an original refugee inflatable. The test site for this campaign is a lake which provides background clutter that is more predictable. The analysis considered a sum of experiments, enabling investigations of a broad range of scene settings, such as the vessel’s orientation, superstructures and speed. We assess their impact on the detectability of the chosen target under different sensor parameters, such as polarimetry, resolution and incidence angle. Results show that TerraSAR-X Spotlight and Stripmap modes offer good capabilities to potentially detect those types of boats in distress. Low incidence angles and cross-polarization decrease the chance of a successful identification, whereas a fully occupied inflatable, orthogonally oriented to the line of sight, seems to be better visible than an empty one. The polarimetric analyses prove the vessel’s different polarimetric behavior in comparison with the water surface, especially when it comes to entropy. The analysis considered state-of-the-art methodologies with single polarization and dual polarization channels. Finally, different metrics are used to discuss whether and to which extent the results are applicable to other open ocean datasets. This paper does not introduce any vessel detection or classification algorithm from SAR images. Rather, its results aim at paving the way to the design and the development of a specially tailored detection algorithm for small rubber inflatables.
In the efforts to mitigate the ongoing humanitarian crisis at the European sea borders, this work builds detection capabilities to help find refugee boats in distress. For this paper, we collected dual-pol and quad-pol synthetic aperture radar (SAR) data over a 12 m rubber inflatable in a test-bed lake near Berlin, Germany. To consider a real scenario, we prepared the vessel so that its backscattering emulated that of a vessel fully occupied with people. Further, we collected SAR imagery over the ocean with different sea states, categorized by incidence angle and by polarization. These were used to emulate the conditions for a vessel located in ocean waters. This setup enabled us to test nine well-known vessel-detection systems (VDS), to explore the capabilities of new detection algorithms and to benchmark different combinations of detectors (detector fusion) with respect to different sensor and scene parameters (e.g., the polarization, wind speed, wind direction and boat orientation). This analysis culminated in designing a system that is specifically tailored to accommodate different situations and sea states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.