Rare negative streamwise velocities and extreme wall-normal velocity fluctuations near the wall are investigated for turbulent channel flow at a series of Reynolds numbers based on friction velocity up to Re τ = 1000. Probability density functions of the wall-shear stress and velocity components are presented as well as joint probability density functions of the velocity components and the pressure. Backflow occurs more often (0.06% at the wall at Re τ = 1000) and further away (up to y + = 8.5) from the wall for increasing Reynolds number. The regions of backflow are circular with an average diameter, based on ensemble averages, of approximately 20 viscous units independent of Reynolds number. A strong oblique vortex outside the viscous sublayer is found to cause this backflow. Extreme wall-normal velocity events occur also more often for increasing Reynolds number. These extreme fluctuations cause high flatness values near the wall (F(v) = 43 at Re τ = 1000). Positive and negative velocity spikes appear in pairs, located on the two edges of a strong streamwise vortex as documented by Xu et al. [Phys. Fluids 8, 1938 (1996)] for Re τ = 180. The spikes are elliptical and orientated in streamwise direction with a typical length of 25 and a typical width of 7.5 viscous units at y + ≈ 1. The negative spike occurs in a high-speed streak indicating a sweeping motion, while the positive spike is located in between a high and low-speed streak. The joint probability density functions of negative streamwise and extreme wall-normal velocity events show that these events are largely uncorrelated. The majority of both type of events can be found lying underneath a large-scale structure in the outer region with positive sign, which can be understood by considering the more intense velocity fluctuations due to amplitude modulation of the inner layer by the outer layer. Simulations performed at different resolutions give only minor differences. Results from experiments and recent turbulent boundary layer simulations show similar results indicating that these rare events are universal for wall-bounded flows. In order to detect these rare events in experiments, measurement techniques have to be specifically tuned.
A new high-order method for the accurate simulation of incompressible wall-bounded flows is presented. In stream-and spanwise direction the discretisation is performed by standard Fourier series, while in wall-normal direction the method combines high-order collocated compact finite differences with the influence matrix method to calculate the pressure boundary conditions that render the velocity field divergence-free. The main advantage over Chebyshev collocation is that in wallnormal direction, the grid can be chosen freely and thus excessive clustering near the wall is avoided. Both explicit and implicit discretisations of the viscous terms are described, with the implicit method being more complex, but also having a wider range of applications. The method is validated by simulating fully turbulent channel flow at friction Reynolds number Re τ = 395, and comparing our data with existing numerical results. The results show excellent agreement proving that the method simulates all physical processes correctly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.