Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
We have developed a novel DNA expression system, based on the Semliki Forest virus (SFV) replicon, which combines a wide choice of animal cell hosts, high efficiency and ease of use. DNA of interest is cloned into SFV plasmid vectors that serve as templates for in vitro synthesis of recombinant RNA. The RNA is transfected with virtually 100% efficiency into animal tissue culture cells by means of electroporation. Within the cell, the recombinant RNA drives its own replication and capping and leads to massive production of the heterologous protein while competing out the host protein synthesis. The expression system also includes an in vivo packaging procedure whereby recombinant RNA is packaged into infectious virus particles using cotransfection with packaging-deficient helper RNA molecules. The resulting high titer recombinant virus stock can be used to infect a wide range of animal cells with subsequent high expression of the heterologous gene product, but without expression of any structural proteins of the helper. The infected cells produce protein for up to 75 hours post infection after which the heterologous product can constitute as much as 25% of the total cell protein. The general utility of the system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli beta-galactosidase.
Cross-presentation of cell-associated antigens plays an important role in regulating CD8+ T cell responses to proteins that are not expressed by antigen-presenting cells (APCs). Dendritic cells are the principal cross-presenting APCs in vivo and much progress has been made in elucidating the pathways that allow dendritic cells to capture and process cellular material. However, little is known about the signals that determine whether such presentation ultimately results in a cytotoxic T cell (CTL) response (cross-priming) or in CD8+ T cell inactivation (cross-tolerance). Here we describe a mechanism that promotes cross-priming during viral infections. We show that murine CD8alpha+ dendritic cells are activated by double-stranded (ds)RNA present in virally infected cells but absent from uninfected cells. Dendritic cell activation requires phagocytosis of infected material, followed by signalling through the dsRNA receptor, toll-like receptor 3 (TLR3). Immunization with virus-infected cells or cells containing synthetic dsRNA leads to a striking increase in CTL cross-priming against cell-associated antigens, which is largely dependent on TLR3 expression by antigen-presenting cells. Thus, TLR3 may have evolved to permit cross-priming of CTLs against viruses that do not directly infect dendritic cells.
Alphavirus infection results in the shutoff of host protein synthesis in favor of viral translation. Here, we show that during Semliki Forest virus (SFV) infection, the translation inhibition is largely due to the activation of the cellular stress response via phosphorylation of eukaryotic translation initiation factor 2alpha subunit (eIF2alpha). Infection of mouse embryo fibroblasts (MEFs) expressing a nonphosphorylatable mutant of eIF2alpha does not result in efficient shutoff, despite efficient viral protein production. Furthermore, we show that the SFV translation enhancer element counteracts the translation inhibition imposed by eIF2alpha phosphorylation. In wild-type MEFs, viral infection induces the transient formation of stress granules (SGs) containing the cellular TIA-1/R proteins. These SGs are disassembled in the vicinity of viral RNA replication, synchronously with the switch from cellular to viral gene expression. We propose that phosphorylation of eIF2alpha and the consequent SG assembly is important for shutoff to occur and that the localized SG disassembly and the presence of the enhancer aid the SFV mRNAs to elude general translational arrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.