We consider abelian groups with partial decomposition bases in L δ ∞ω for ordinals δ. Jacoby, Leistner, Loth and Strüngmann developed a numerical invariant deduced from the classical global Warfield invariant and proved that if two groups have identical modified Warfield invariants and Ulm-Kaplansky invariants up to ωδ for some ordinal δ, then they are equivalent in L δ ∞ω. Here we prove that the modified Warfield invariant is expressible in L δ ∞ω and hence the converse is true for appropriate δ.
Ulm's Theorem presents invariants that classify countable abelian torsion groups up to isomorphism. Barwise and Eklof extended this result to the classification of arbitrary abelian torsion groups up to L∞ω-equivalence. In this paper, we extend this classification to a class of mixed Zp-modules which includes all Warfield modules and is closed under L∞ω-equivalence. The defining property of these modules is the existence of what we call a partial decomposition basis, a generalization of the concept of decomposition basis. We prove a complete classification theorem in L∞ω using invariants deduced from the classical Ulm and Warfield invariants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.