The integration of a high share of solar photovoltaics (PV) in distribution networks requires advanced voltage control technologies or network augmentation, both associated with significant investment costs. An alternative is to prevent new customers from installing solar PV systems, but this is against the common goal of increasing renewable energy generation. This paper demonstrates that solar PV curtailment in low voltage areas can be reduced and fairly distributed among PV owners by centrally coordinating the operation of PV inverters. The optimal inverter active and reactive power operation points are computed by solving a multi-objective optimization problem with a fairness objective. The main results show that fair optimal inverter dispatch (FOID) results in less power curtailment than passive voltage regulation based on Volt/VAr droop control, especially at high solar PV to load ratios. The effectiveness of the model is demonstrated on a residential low voltage network.
It is long known that the afternoon peak demand accounts for over-investment in the electricity network assets. This results in a high price of delivered electricity which does not fairly differentiate between peak and non-peak users. Energy tariff is proven to be one of the best demand-side management (DSM) tools for shaping consumers' behaviour. While electricity pricing models, such as inclining block and time-of-use tariffs, have received decent attention as successful mechanisms, there are little discussions about another efficient tariff known as a rollover network capacity charge. It is a penalty for the highest recorded power usage over the previous reading cycle (or year) which is introduced to commercial users in some jurisdictions. With recent price reduction in distributed generation and storage (DGS) systems, the interest has increased in devising policies for directing the household and commercial consumers' behaviour towards using DGS systems in line with DSM objectives. In this paper, we have integrated the rollover network capacity charge into DGS systems investment analysis. The results from a few case studies show the positive impact of capacity charge in directing the peak-consumers' investment decisions towards DSM tools (e.g., energy storage) to curb their peak demands. This not only improves the resilience of the network but also promises as an effective mechanism in energy-justice nexus by avoiding the transfer of the associated costs of peak demand to all users.
Autonomous droop control PV inverters have improved voltage regulation compared to the inverters without grid support functions, but more flexible control techniques will be required as the number of solar photovoltaic (PV) installations increases. This paper studies three inverter future deployment scenarios with droop control inverters, non-exporting inverters, and coordinated inverter control (CIC). The network operation and the interaction between various inverter control methods are studied by simulating inverter operation on two low-voltage networks. Considering 30% PV penetration as the base case, we demonstrate that coordinated inverters can mitigate overvoltages and voltage fluctuations caused by the tripping of passive inverters in 85% of PV location cases when at least as many coordinated as passive inverters are deployed on the 114-node test feeder. However, this rate reduced to 37% with the IEEE 906-node network demonstrating that the deployment of coordinated inverter control may not be able to reverse passive inverter-related voltage disturbances when the build-up of passive inverters has reached a certain threshold.The aggregated PV output from coordinated inverters can be also used to provide grid support services. When the low-voltage networks operate close to the upper voltage limits, the change in the power output from coordinated inverters following a regulation request may be partially offset by passive inverters. Considering an equal number of passive and coordinated inverters, this paper shows that for each unit of the down-regulation request delivered by coordinated inverters, passive inverter output may increase by up to 0.2 units and decrease by up to 0.45 units during coordinated inverter up-regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.