Dose calculation algorithms based on Monte Carlo (MC) simulations play a crucial role in radiotherapy. Here, the development and benchmarking of a novel MC dose engine, MonteRay, is presented for proton therapy aiming to support clinical activity at the Heidelberg Ion Beam Therapy center (HIT) and the development of MRI (magnetic resonance imaging)-guided particle therapy. Comparisons against dosimetric data and gold standard MC FLUKA calculations at different levels of complexity, ranging from single pencil beams in water to patient plans, showed high levels of agreement, validating the physical approach implemented in the dose engine. Additionally, MonteRay has been found to match satisfactorily to FLUKA dose predictions in magnetic fields both in homogeneous and heterogeneous scenarios advocating its use for future MRI-guided proton therapy applications. Benchmarked on 150 MeV protons transported on a 2 × 2 × 2 mm3 grid, MonteRay achieved a high computational throughput and was able to simulate the histories of more than 30,000 primary protons per second on a single CPU core.
Background: Monte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; however, general purpose MC engines are computationally demanding and require long runtimes. For this reason, several groups have recently developed fast MC systems dedicated mainly to photon and proton external beam therapy, affording both speed and accuracy. Purpose: To support research and clinical activities at the Heidelberg Ionbeam Therapy Center (HIT) with actively scanned helium ion beams, this work presents MonteRay, the first fast MC dose calculation engine for helium ion therapy. Methods: MonteRay is a CPU MC dose calculation engine written in C++, capable of simulating therapeutic proton and helium ion beams. In this work, development steps taken to include helium ion beams in MonteRay are presented. A detailed description of the newly implemented physics models for helium ions, for example, for multiple coulomb scattering and inelastic nuclear interactions, is provided. MonteRay dose computations of helium ion beams are evaluated using a comprehensive validation dataset, including measurements of spread-out Bragg peaks (SOBPs) with varying penetration depths/field sizes, measurements with an anthropomorphic phantom and FLUKA simulations of a patient plan. Improvement in computational speed is demonstrated in comparison against reference FLUKA simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.