Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global highcapacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.
Abstract-In this paper, we review the recent progress in transmission experiments by employing optical phase conjugation (OPC) for the compensation of chromatic dispersion and nonlinear impairments. OPC is realized with difference frequency generation (DFG) in a periodically poled lithium-niobate (PPLN) waveguide, for transparent wavelength-division multiplexed (WDM) operation with high conversion efficiency. We discuss extensively the principle behind optical phase conjugation and the realization of a polarization independent OPC subsystem. Using OPC for chromatic dispersion compensation WDM 40-Gb/s long-haul transmission is described. As well, transmission employing both mixed data rates and mixed modulation formats is discussed. No significant nonlinear impairments are observed from the nonperiodic dispersion map used in these experiments. The compensation of intrachannel nonlinear impairments by OPC is described for WDM carrier-suppressed return-to-zero (CSRZ) transmission. In this experiment, a 50% increase in transmission reach is obtained by adding an OPC unit to a transmission line using dispersion compensating fiber (DCF) for dispersion compensation. Furthermore, the compensation of impairments due to nonlinear phase noise is reviewed. An in-depth analysis is conducted on what performance improvement is to be expected for various OPC configurations and a proof-of-principle experiment is described showing over 4-dB improvement in Q-factor due to compensation of nonlinear impairments resulting from nonlinear phase noise. Finally, an ultralong-haul WDM transmission of 22 × 20-Gb/s return-tozero differential quadrature phase-shift keying (RZ-DQPSK) is discussed showing that OPC can compensate for chromatic dispersion, as well as self-phase modulation (SPM) induced nonlinear impairments, such as nonlinear phase noise. Compared to a "conventional" transmission link using DCF for dispersion compensation, a 44% increase in transmission reach is obtained when OPC is employed. In this experiment, we show the feasibility of using only one polarization-independent PPLN subsystem to compensate for an accumulated chromatic dispersion of over 160 000 ps/nm. Index Terms-Dispersion compensation, differential phaseshift keying (DPSK), differential quadrature phase-shift keying (DQPSK), duobinary, fiber-optics communications, nonlinear phase noise, phase conjugation, phase-shift keying, periodically poled lithium niobate (PPLN), spectral inversion.
We present a constraint-based routing (CBR) approach for real-time operation considering both linear as well as nonlinear signal quality degrading effects in a heterogeneous network infrastructure. Different novel routing algorithms are assessed regarding their blocking probabilities. Furthermore, regenerator pools are placed at a limited number of nodes selected by a heuristic algorithm taking into account the physical impairments. It is shown that CBR together with intelligent regenerator placement can decrease the blocking probability significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.