SummaryBackgroundTimely access to emergency care can substantially reduce mortality. International benchmarks for access to emergency hospital care have been established to guide ambitions for universal health care by 2030. However, no Pan-African database of where hospitals are located exists; therefore, we aimed to complete a geocoded inventory of hospital services in Africa in relation to how populations might access these services in 2015, with focus on women of child bearing age.MethodsWe assembled a geocoded inventory of public hospitals across 48 countries and islands of sub-Saharan Africa, including Zanzibar, using data from various sources. We only included public hospitals with emergency services that were managed by governments at national or local levels and faith-based or non-governmental organisations. For hospital listings without geographical coordinates, we geocoded each facility using Microsoft Encarta (version 2009), Google Earth (version 7.3), Geonames, Fallingrain, OpenStreetMap, and other national digital gazetteers. We obtained estimates for total population and women of child bearing age (15–49 years) at a 1 km2 spatial resolution from the WorldPop database for 2015. Additionally, we assembled road network data from Google Map Maker Project and OpenStreetMap using ArcMap (version 10.5). We then combined the road network and the population locations to form a travel impedance surface. Subsequently, we formulated a cost distance algorithm based on the location of public hospitals and the travel impedance surface in AccessMod (version 5) to compute the proportion of populations living within a combined walking and motorised travel time of 2 h to emergency hospital services.FindingsWe consulted 100 databases from 48 sub-Saharan countries and islands, including Zanzibar, and identified 4908 public hospitals. 2701 hospitals had either full or partial information about their geographical coordinates. We estimated that 287 282 013 (29·0%) people and 64 495 526 (28·2%) women of child bearing age are located more than 2-h travel time from the nearest hospital. Marked differences were observed within and between countries, ranging from less than 25% of the population within 2-h travel time of a public hospital in South Sudan to more than 90% in Nigeria, Kenya, Cape Verde, Swaziland, South Africa, Burundi, Comoros, São Tomé and Príncipe, and Zanzibar. Only 16 countries reached the international benchmark of more than 80% of their populations living within a 2-h travel time of the nearest hospital.InterpretationPhysical access to emergency hospital care provided by the public sector in Africa remains poor and varies substantially within and between countries. Innovative targeting of emergency care services is necessary to reduce these inequities. This study provides the first spatial census of public hospital services in Africa.FundingWellcome Trust and the UK Department for International Development.
Health facilities form a central component of health systems, providing curative and preventative services and structured to allow referral through a pyramid of increasingly complex service provision. Access to health care is a complex and multidimensional concept, however, in its most narrow sense, it refers to geographic availability. Linking health facilities to populations has been a traditional per capita index of heath care coverage, however, with locations of health facilities and higher resolution population data, Geographic Information Systems allow for a more refined metric of health access, define geographic inequalities in service provision and inform planning. Maximizing the value of spatial heath access requires a complete census of providers and their locations. To-date there has not been a single, geo-referenced and comprehensive public health facility database for sub-Saharan Africa. We have assembled national master health facility lists from a variety of government and non-government sources from 50 countries and islands in sub Saharan Africa and used multiple geocoding methods to provide a comprehensive spatial inventory of 98,745 public health facilities.
BackgroundSpatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate priority areas to reorient intervention approaches and investments in malaria endemic countries. Here, the analysis of 36 years data on Plasmodium falciparum prevalence is used to understand the past and chart a future for malaria control in Kenya by confidently highlighting areas within important policy relevant thresholds to allow either the revision of malaria strategies to those that support pre-elimination or those that require additional control efforts.MethodsPlasmodium falciparum parasite prevalence (PfPR) surveys undertaken in Kenya between 1980 and 2015 were assembled. A spatio-temporal geostatistical model was fitted to predict annual malaria risk for children aged 2–10 years (PfPR2–10) at 1 × 1 km spatial resolution from 1990 to 2015. Changing PfPR2–10 was compared against plausible explanatory variables. The fitted model was used to categorize areas with varying degrees of prediction probability for two important policy thresholds PfPR2–10 < 1% (non-exceedance probability) or ≥ 30% (exceedance probability).Results5020 surveys at 3701 communities were assembled. Nationally, there was an 88% reduction in the mean modelled PfPR2–10 from 21.2% (ICR: 13.8–32.1%) in 1990 to 2.6% (ICR: 1.8–3.9%) in 2015. The most significant decline began in 2003. Declining prevalence was not equal across the country and did not directly coincide with scaled vector control coverage or changing therapeutics. Over the period 2013–2015, of Kenya’s 47 counties, 23 had an average PfPR2–10 of < 1%; four counties remained ≥ 30%. Using a metric of 80% probability, 8.5% of Kenya’s 2015 population live in areas with PfPR2–10 ≥ 30%; while 61% live in areas where PfPR2–10 is < 1%.ConclusionsKenya has made substantial progress in reducing the prevalence of malaria over the last 26 years. Areas today confidently and consistently with < 1% prevalence require a revised approach to control and a possible consideration of strategies that support pre-elimination. Conversely, there remains several intractable areas where current levels and approaches to control might be inadequate. The modelling approaches presented here allow the Ministry of Health opportunities to consider data-driven model certainty in defining their future spatial targeting of resources.Electronic supplementary materialThe online version of this article (10.1186/s12936-018-2489-9) contains supplementary material, which is available to authorized users.
Background Poor access to immunisation services remains a major barrier to achieving equity and expanding vaccination coverage in many sub-Saharan African countries. In Kenya, the extent to which spatial access affects immunisation coverage is not well understood. The aim of this study was to quantify spatial accessibility to immunising health facilities and determine its influence on immunisation uptake in Kenya while controlling for potential confounders. Methods Spatial databases of immunising facilities, road network, land use and elevation were used within a cost friction algorithim to estimate the travel time to immunising health facilities. Two travel scenarios were evaluated; (1) Walking only and (2) Optimistic scenario combining walking and motorized transport. Mean travel time to health facilities and proportions of the total population living within 1-h to the nearest immunising health facility were computed. Data from a nationally representative cross-sectional survey (KDHS 2014), was used to estimate the effect of mean travel time at survey cluster units for both fully immunised status and third dose of diphtheria-tetanus-pertussis (DPT3) vaccine using multi-level logistic regression models. Results Nationally, the mean travel time to immunising health facilities was 63 and 40 min using the walking and the optimistic travel scenarios respectively. Seventy five percent of the total population were within one-hour of walking to an immunising health facility while 93% were within one-hour considering the optimistic scenario. There were substantial variations across the country with 62%(29/47) and 34%(16/47) of the counties with < 90% of the population within one-hour from an immunising health facility using scenarios 1 and 2 respectively. Travel times > 1-h were significantly associated with low immunisation coverage in the univariate analysis for both fully immunised status and DPT3 vaccine. Children living more than 2-h were significantly less likely to be fully immunised [AOR:0.56(0.33–0.94) and receive DPT3 [AOR:0.51(0.21–0.92) after controlling for household wealth, mother’s highest education level, parity and urban/rural residence. Conclusion Travel time to immunising health facilities is a barrier to uptake of childhood vaccines in regions with suboptimal accessibility (> 2-h). Strategies that address access barriers in the hardest to reach communities are needed to enhance equitable access to immunisation services in Kenya.
BackgroundResponse to the coronavirus disease 2019 (COVID-19) pandemic calls for precision public health reflecting our improved understanding of who is the most vulnerable and their geographical location. We created three vulnerability indices to identify areas and people who require greater support while elucidating health inequities to inform emergency response in Kenya.MethodsGeospatial indicators were assembled to create three vulnerability indices; Social VulnerabilityIndex (SVI), Epidemiological Vulnerability Index (EVI) and a composite of the two, that is, Social Epidemiological Vulnerability Index (SEVI) resolved at 295 subcounties in Kenya. SVI included 19 indicators that affect the spread of disease; socioeconomic deprivation, access to services and population dynamics, whereas EVI comprised 5 indicators describing comorbidities associated with COVID-19 severe disease progression. The indicators were scaled to a common measurement scale, spatially overlaid via arithmetic mean and equally weighted. The indices were classified into seven classes, 1–2 denoted low vulnerability and 6–7, high vulnerability. The population within vulnerabilities classes was quantified.ResultsThe spatial variation of each index was heterogeneous across Kenya. Forty-nine northwestern and partly eastern subcounties (6.9 million people) were highly vulnerable, whereas 58 subcounties (9.7 million people) in western and central Kenya were the least vulnerable for SVI. For EVI, 48 subcounties (7.2 million people) in central and the adjacent areas and 81 subcounties (13.2 million people) in northern Kenya were the most and least vulnerable, respectively. Overall (SEVI), 46 subcounties (7.0 million people) around central and southeastern were more vulnerable, whereas 81 subcounties (14.4 million people) were least vulnerable.ConclusionThe vulnerability indices created are tools relevant to the county, national government and stakeholders for prioritisation and improved planning. The heterogeneous nature of the vulnerability indices underpins the need for targeted and prioritised actions based on the needs across the subcounties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.