As women enter menopause, the concentration of estrogen and other female hormones declines. This hormonal decrease has been associated with a number of negative outcomes, including a greater incidence of injury as well as a delay in recovery from these injuries. Over the past two decades, our understanding of the protective effects of estrogen against various types of injury and disease states has grown immensely. In skeletal muscle, studies with animals have demonstrated that sex and estrogen may potentially influence muscle contractile properties and attenuate indices of post-exercise muscle damage, including the release of creatine kinase into the bloodstream and activity of the intramuscular lysosomal acid hydrolase, beta-glucuronidase. Furthermore, numerous studies have revealed an estrogen-mediated attenuation of infiltration of inflammatory cells such as neutrophils and macrophages into the skeletal muscles of rats following exercise or injury. Estrogen has also been shown to play a significant role in stimulating muscle repair and regenerative processes, including the activation and proliferation of satellite cells. Although the mechanisms by which estrogen exerts its influence upon indices of skeletal muscle damage, inflammation and repair have not been fully elucidated, it is thought that estrogen may potentially exert its protective effects by: (i) acting as an antioxidant, thus limiting oxidative damage; (ii) acting as a membrane stabilizer by intercalating within membrane phospholipids; and (iii) binding to estrogen receptors, thus governing the regulation of a number of downstream genes and molecular targets. In contrast to animal studies, studies with humans have not as clearly delineated an effect of estrogen on muscle contractile function or on indices of post-exercise muscle damage and inflammation. These inconsistencies have been attributed to a number of factors, including age and fitness level of subjects, the type and intensity of exercise protocols, and a focus on sex differences that typically involve factors and hormones in addition to estrogen. In recent years, hormone replacement therapy (HRT) or estrogen combined with exercise have been proposed as potentially therapeutic agents for postmenopausal women, as these agents may potentially limit muscle damage and inflammation and stimulate repair in this population. While the benefits and potential health risks of long-term HRT use have been widely debated, controlled studies using short-term HRT or other estrogen agonists may provide future new and valuable insights into understanding the effects of estrogen on skeletal muscle, and greatly benefit the aging female population. Recent studies with older females have begun to demonstrate their benefits.
To investigate the influence of estrogen on postexercise muscle repair processes, we examined the effects of estrogen supplementation (0.25-mg pellet) on numbers of myofibers positive for markers of total, activated, and proliferating satellite cells in rat skeletal muscles 72 h following downhill running. Ovariectomized female rats (n = 44) were divided into four groups (n = 11 per group): sham (no estrogen) controls (SC); sham, exercised (SE); estrogen-supplemented controls (EC); and estrogen-supplemented, exercised (EE). After 8 days of estrogen exposure, animals were exposed to 90 min of treadmill running at 17 m/min (-13.5 degrees ). Seventy-two hours later, soleus and white vastus muscles were removed and immunostained for total [paired box homeotic gene 7 (Pax7)], [activated myogenic differentiation factor D (MyoD)], and proliferating [5-bromo-2'-deoxyuridine (BrdU)] satellite cells. beta-Glucuronidase activity was increased (P < 0.05) in both muscles following exercise; however, the postexercise elevations in enzyme activity were attenuated in the EE group compared with the SE group in the soleus (P < 0.05). Immunohistochemical analysis revealed that exercised groups displayed increased numbers of myofibers containing total, activated, and proliferating satellite cells compared with control groups (P < 0.05). Furthermore, greater numbers of fibers positive for markers of total, activated, and proliferating satellite cells were observed postexercise in EE animals compared with SE animals for both muscles (P < 0.05). The results demonstrate that estrogen may potentially influence post-damage repair of skeletal muscle through activation of satellite cells.
We conclude that vitamin E supplementation (30 d at 1200 IU.d-1), which resulted in a 2.8-fold higher serum vitamin E concentration (P < 0.01), had no affect on indices of contraction-induced muscle damage nor inflammation (macrophage infiltration) as a result of eccentrically biased muscle contractions.
We hypothesized that estrogen administration would attenuate skeletal muscle neutrophil infiltration, indices of muscle membrane disruption, and muscle calpain activity shortly after the termination of exercise. Ovariectomized female rats were implanted with either an estogen pellet (25 mg beta-estradiol) or a placebo pellet. Two weeks postimplant, animals were killed either at rest or 1 h after running exercise (60 min at 21 m x min(-1), 12% grade). The 4 experimental groups (n = 12) used were: unexercised placebo (UP), unexercised estrogen (UE), exercised placebo (EP), and exercised estrogen (EE). Blood samples were analyzed for creatine kinase (CK) activity and estradiol content. Plantaris and gastrocnemius muscles were removed and histochemical determination of neutrophil content or biochemical determination of myeloperoxidase (MPO), glucose-6-phosphate dehydrogenase (G6PD), and calpain-like activity determined. Estrogen supplemented animals had 10-20-fold higher circulating estradiol levels than placebo animals. EP animals had significantly higher (P < 0.05) circulating CK activities than EE or unexercised animals. Muscle neutrophil concentrations were significantly (P < 0.01) elevated in EP and EE groups compared with unexercised controls, with EP muscle neutrophil levels also being over 60% greater (P < 0.05) than in EE animals. EP animals also had higher (P < 0.05) muscle MPO activities than unexercised or EE animals. Muscle G6PD activities were not significantly different between any groups. Muscle caplain-like activities were 80% higher (P < 0.01) in EP animals than EE animals with calpain-like activities in EE animals similar to unexercised groups. These results indicate that estrogen supplementation in ovariectomized rats attenuated 1-h post-exercise serum CK activities, muscle neutrophil infiltration, MPO activities, and calpain-like activities when compared with exercised, unsupplemented animals. This supports the possibility of a relationship between estrogen, calpain dependent production of neutrophil chemo-attractant peptides, and 1-h post-exercise skeletal muscle neutrophil infiltration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.