We show that near–real-time seismic monitoring of fluid injection allowed control of induced earthquakes during the stimulation of a 6.1-km-deep geothermal well near Helsinki, Finland. A total of 18,160 m3of fresh water was pumped into crystalline rocks over 49 days in June to July 2018. Seismic monitoring was performed with a 24-station borehole seismometer network. Using near–real-time information on induced-earthquake rates, locations, magnitudes, and evolution of seismic and hydraulic energy, pumping was either stopped or varied—in the latter case, between well-head pressures of 60 and 90 MPa and flow rates of 400 and 800 liters/min. This procedure avoided the nucleation of a project-stopping magnitudeMW2.0 induced earthquake, a limit set by local authorities. Our results suggest a possible physics-based approach to controlling stimulation-induced seismicity in geothermal projects.
Active and passive seismic experiments show that the southern Sierra, despite standing 1.8 to 2.8 kilometers above its surroundings, is underlain by crust of similar seismic thickness, about 30 to 40 kilometers. Thermobarometry of xenolith suites and magnetotelluric profiles indicate that the upper mantle is eclogitic to depths of 60 kilometers beneath the western and central parts of the range, but little subcrustal lithosphere is present beneath the eastern High Sierra and adjacent Basin and Range. These and other data imply the crust of both the High Sierra and Basin and Range thinned by a factor of 2 since 20 million years ago, at odds with purported late Cenozoic regional uplift of some 2 kilometers.
Magnetotelluric and seismic reflection surveys at Parkfield, California, show that the San Andreas fault zone is characterized by a vertical zone of low electrical resistivity. This zone is ≈500 m wide and extends to a depth of ≈4000 m. The low electrical resistivity is attributed to high porosity of saline fluids present in the highly fractured fault zone. The occurrence of microearthquakes and creep in the low resistivity zone is consistent with suggestions that seismicity at Parkfield is fluid driven. Figure 1. Map of San Andreas fault in vicinity of Parkfield showing location of magnetotelluric (MT) and seismic surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.