Molecular processes of neuronal learning have been well-described. However, learning mechanisms of non-neuronal cells have not been fully understood at the molecular level. Here, we discuss molecular mechanisms of cellular learning, including conformational memory of intrinsically disordered proteins and prions, signaling cascades, protein translocation, RNAs (microRNA and lncRNA), and chromatin memory. We hypothesize that these processes constitute the learning of signaling networks and correspond to a generalized Hebbian learning process of single, non-neuronal cells, and discuss how cellular learning may open novel directions in drug design and inspire new artificial intelligence methods. Highlights--Besides the well-known learning processes of neurons, non-neuronal single cells are able to learn and show a more robust (and often faster) adaptive response when the same stimulus is repeated.--Known examples of cellular learning are sensitization-or habituation-type responses.--Several molecular mechanisms of neuronal learning, such as conformational memory, protein translocation, signaling cascades, microRNAs, lncRNAs and chromatin memory, also participate in learning of non-neuronal, single cells.--We propose that these molecular mechanisms form the integrative memory of signaling networks and display a generalized Hebbian learning process by increasing those edge weights through which the signal has been propagated. Learning of non-neural cells: Adaptive Molecular Responses Observed when the same Stimulus is RepeatedMolecular mechanisms of neuronal learning have been well-established in the past decades [1]. However, we know relatively little about the molecular details of learning mechanisms of non-neuronal cells. We define cellular learning as an adaptive response to a simple stimulus observed when the same stimulus is repeated in a short time -as compared to the duration of the cell cycle of the given cell. We note that it is crucial to discriminate between molecular changes which are indeed adaptive, and those which are fortuitous by-products of other, co-* Correspondence: csermely.peter@med.semmelweis-univ.hu (P. Csermely)
Here we present Translocatome, the first dedicated database of human translocating proteins (URL: http://translocatome.linkgroup.hu). The core of the Translocatome database is the manually curated data set of 213 human translocating proteins listing the source of their experimental validation, several details of their translocation mechanism, their local compartmentalized interactome, as well as their involvement in signalling pathways and disease development. In addition, using the well-established and widely used gradient boosting machine learning tool, XGBoost, Translocatome provides translocation probability values for 13 066 human proteins identifying 1133 and 3268 high- and low-confidence translocating proteins, respectively. The database has user-friendly search options with a UniProt autocomplete quick search and advanced search for proteins filtered by their localization, UniProt identifiers, translocation likelihood or data complexity. Download options of search results, manually curated and predicted translocating protein sets are available on its website. The update of the database is helped by its manual curation framework and connection to the previously published ComPPI compartmentalized protein–protein interaction database (http://comppi.linkgroup.hu). As shown by the application examples of merlin (NF2) and tumor protein 63 (TP63) Translocatome allows a better comprehension of protein translocation as a systems biology phenomenon and can be used as a discovery-tool in the protein translocation field.
Regulation of translocating proteins is crucial in defining cellular behaviour. Epithelial-mesenchymal transition (EMT) is important in cellular processes, such as cancer progression. Several orchestrators of EMT, such as key transcription factors, are known to translocate. We show that translocating proteins become enriched in EMT-signalling. To simulate the compartment-specific functions of translocating proteins we created a compartmentalized Boolean network model. This model successfully reproduced known biological traits of EMT and as a novel feature it also captured organelle-specific functions of proteins. Our results predicted that glycogen synthase kinase-3 beta (GSK3B) compartment-specifically alters the fate of EMT, amongst others the activation of nuclear GSK3B halts transforming growth factor beta-1 (TGFB) induced EMT. Moreover, our results recapitulated that the nuclear activation of glioma associated oncogene transcription factors (GLI) is needed to achieve a complete EMT. Compartmentalized network models will be useful to uncover novel control mechanisms of biological processes. Our algorithmic procedures can be automatically rerun on the https://translocaboole.linkgroup.hu website, which provides a framework for similar future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.