AMPA receptors (AMPARs) are not thought to be involved in the induction of long-term potentiation (LTP), but may be involved in its expression via second messenger pathways. However, one subunit of the AMPARs, GluR2, is also known to control Ca2+ influx. To test whether GluR2 plays any role in the induction of LTP, we generated mice that lacked this subunit. In GluR2 mutants, LTP in the CA1 region of hippocampal slices was markedly enhanced (2-fold) and nonsaturating, whereas neuronal excitability and paired-pulse facilitation were normal. The 9-fold increase in Ca2+ permeability, in response to kainate application, suggests one possible mechanism for enhanced LTP. Mutant mice exhibited increased mortality, and those surviving showed reduced exploration and impaired motor coordination. These results suggest an important role for GluR2 in regulating synaptic plasticity and behavior.
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.
Clinical human genetic studies have recently identified the tetrodotoxin (TTX) sensitive neuronal voltage gated sodium channel Nav1.7 (SCN9A) as a critical mediator of pain sensitization. Herein, we report structure-activity relationships for a novel series of 2,4-diaminotriazines that inhibit hNav1.7. Optimization efforts culminated in compound 52, which demonstrated pharmacokinetic properties appropriate for in vivo testing in rats. The binding site of compound 52 on Nav1.7 was determined to be distinct from that of local anesthetics. Compound 52 inhibited tetrodotoxin-sensitive sodium channels recorded from rat sensory neurons and exhibited modest selectivity against the hERG potassium channel and against cloned and native tetrodotoxin-resistant sodium channels. Upon oral administration to rats, compound 52 produced dose- and exposure-dependent efficacy in the formalin model of pain.
To realize the medicinal potential of peptide toxins, naturally occurring disulfide-rich peptides, as ion channel antagonists, more efficient pharmaceutical optimization technologies must be developed. Here, we show that the therapeutic properties of multiple cysteine toxin peptides can be rapidly and substantially improved by combining direct chemical strategies with high-throughput electrophysiology. We applied whole-molecule, brute-force, structure-activity analoging to ShK, a peptide toxin from the sea anemone Stichodactyla helianthus that inhibits the voltage-gated potassium ion channel Kv1.3, to effectively discover critical structural changes for 15× selectivity against the closely related neuronal ion channel Kv1.1. Subsequent site-specific polymer conjugation resulted in an exquisitely selective Kv1.3 antagonist (>1000× over Kv1.1) with picomolar functional activity in whole blood and a pharmacokinetic profile suitable for weekly administration in primates. The pharmacological potential of the optimized toxin peptide was demonstrated by potent and sustained inhibition of cytokine secretion from T cells, a therapeutic target for autoimmune diseases, in cynomolgus monkeys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.