Inability to age tropical trees has imposed major limitations on the basic and applied science of tropical forests. Here advantage was taken of even-aged stands present in successional chronosequences found on Amazonian Whitewater river meanders to simplify the assumptions needed to estimate tree ages from growth measurements. Growth increments of eight common early successional species were measured in 21 0.5-ha plots evenly distributed over chronosequences from the earliest post-pioneer stage to mature Ficus-Cedrela stands representing approximately the mid-point of primary succession. Increment measurements, based on 4 or 5 y of growth, were arrayed in scatter diagrams against the midpoints of the growth intervals. A loess regression of the points, weighted for the higher mortality of slow-growing individuals, was then conducted to generate a 'best estimate lifetime growth trajectory' (BELGT) of a 'typical' individual surviving to maturity. The BELGT curves were integrated to generate a set of derived curves describing the time required by a 'typical' surviving individual to attain any given size up to the maximum for the species. Predictions of the ages of particular stands were derived from these latter curves and found to agree within 3 to 20% of ages independently estimated from the rate of point bar accretion.
We develop and describe a Bayesian statistical analysis to solve the surface brightness equations for Cepheid distances and stellar properties. Our analysis provides a mathematically rigorous and objective solution to the problem, including immunity from Lutz-Kelker bias. We discuss the choice of priors, show the construction of the likelihood distribution, and give sampling algorithms in a Markov chain Monte Carlo approach for efficiently and completely sampling the posterior probability distribution. Our analysis averages over the probabilities associated with several models rather than attempting to pick the '' best model '' from several possible models. Using a sample of 13 Cepheids we demonstrate the method. We discuss diagnostics of the analysis and the effects of the astrophysical choices going into the model. We show that we can objectively model the order of Fourier polynomial fits to the light and velocity data. By comparison with theoretical models of Bono et al. we find that EU Tau and SZ Tau are overtone pulsators, most likely without convective overshoot. The period-radius and period-luminosity relations we obtain are shown to be compatible with those in the recent literature. Specifically, we find logð R h iÞ ¼ ð0:693 AE 0:037Þ logðPÞ À 1:2 ½ þ ð2:042 AE 0:047Þ and M v h i ¼ Àð2:690 AE 0:169Þ logðPÞ À 1:2 ½ À ð 4:699 AE 0:216Þ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.