Chemotherapeutic drugs are widely utilized in the treatment of human cancers. Painful chemotherapy-induced neuropathy is a common, debilitating, and dose-limiting side effect for which there is currently no effective treatment. Previous studies have demonstrated the potential utility of peptides from the marine snail from the genus Conus for the treatment of neuropathic pain. α-Conotoxin RgIA and a potent analog, RgIA4, have previously been shown to prevent the development of neuropathy resulting from the administration of oxaliplatin, a platinum-based antineoplastic drug. Here, we have examined its efficacy against paclitaxel, a chemotherapeutic drug that works by a mechanism of action distinct from that of oxaliplatin. Paclitaxel was administered at 2 mg/kg (intraperitoneally (IP)) every other day for a total of 8 mg/kg. Sprague Dawley rats that were co-administered RgIA4 at 80 µg/kg (subcutaneously (SC)) once daily, five times per week, for three weeks showed significant recovery from mechanical allodynia by day 31. Notably, the therapeutic effects reached significance 12 days after the last administration of RgIA4, which is suggestive of a rescue mechanism. These findings support the effects of RgIA4 in multiple chemotherapeutic models and the investigation of α9α10 nicotinic acetylcholine receptors (nAChRs) as a non-opioid target in the treatment of chronic pain.Patients have exhibited several types of neuropathies, including numbness, chronic pain, and allodynia (painful hypersensitivity) to mechanical or thermal stimuli [5]. Amongst patients, however, the type, duration, and severity of neuropathy can vary [6]. While the prevalence and manifestations of paclitaxel-induced neuropathy have been well documented, the underlying mechanisms are still being characterized. Several adjuvant treatments have been used in an attempt to combat the effects of chemotherapy-induced peripheral neuropathy (CIPN). However, there are currently no FDA-approved medications for the prevention or treatment of CIPN.Cone snails have historically displayed a repertoire of therapeutic molecules. The venomous marine gastropods of the genus Conus are a diverse collection of snails that have developed complex hunting and envenomation strategies. The venoms of these snails contain hundreds of unique peptides, and the contents of these venoms can also change in response to defensive or predatory stimuli [7]. Cone snails have refined a suite of bioactive peptides that can exquisitely and potently discriminate among receptors involved in neurotransmission. These targets include G-protein-coupled receptors and voltage-and ligand-gated ion channels [8]. The chemical arsenal of each snail also contains bioactive compounds that have been characterized as prey-endogenous mimetics, such as the insulin-like peptide used by Conus geographus, which more closely resembles fish insulin than its own [9]. The discovery of this molecular mimicry strategy spurred the characterization of several other hormone/neuropeptide-like peptides in the venom reperto...
Venom-derived compounds are of broad interest in neuropharmacology and drug development. α-Conotoxins are small disulfide-containing peptides from Conus snails that target nicotinic acetylcholine receptors (nAChRs) and are in clinical development for non-opioid-based treatment of intractable pain. Although refined by evolution for interaction with target prey receptors, enhancements of pharmacological properties are needed for use in mammalian systems. Therefore, we synthesized analogues of α-conotoxin RgIA using a combination of selective penicillamine substitutions together with natural and non-natural amino acid replacements. This approach resulted in a peptide with 9000-fold increased potency on the human α9α10 nAChR and improved resistance to disulfide shuffling compared to the native peptide. The lead analogue, RgIA-5474, potently blocked α9α10 nAChRs, but not opioid- or other pain-related targets. In addition, RgIA-5474 effectively reversed chemotherapy-induced neuropathic pain.
Synthetic nucleic acids have shown great potential in the treatment of various diseases. Nevertheless, the selective delivery to a target tissue has proved challenging. The coupling of nucleic acids to targeting peptides, proteins and antibodies has been explored as an approach for their selective tissue delivery. Nevertheless, the preparation of covalently coupled peptides and proteins that can also undergo intracellular release as well as deliver more than one copy of the nucleic acid has proved challenging. Recently, we have developed a novel method for the rapid non-covalent conjugation of nucleic acids to targeting single chain antibodies (scFv) using chemically self-assembled nanostructures (CSANs). CSANs have been prepared by the self-assembly of two dihydrofolate reductase molecules (DHFR2) and a targeting scFv in the presence of bis-methotrexate (bis-MTX). The valency of the nanorings can be tuned from one to eight subunits, depending on the length and composition of the linker between the dihydrofolate reductase molecules. To explore their potential for the therapeutic delivery of nucleic acids as well as the ability to expand the capabilities of CSANs by incorporating smaller cyclic targeting peptides, we prepared DHFR2 proteins fused through a flexible peptide linker to cyclic-RGD, which targets αvβ3 integrins, and a bis-MTX chemical dimerizer linked to an antisense oligonucleotide (bis- MTX-ASO) that has been shown to silence expression of eukaryotic translation initiation factor 4E (eIF4E). Monomeric and multimeric cRGD-CSANs were then prepared with bis-MTX-ASO and shown to undergo endocytosis in the breast cancer cell line, MDA-MB-231, which over- express αvβ3. The bis-MTX-ASO was shown to undergo endosomal escape resulting in the knock down of eIF4E with at least the same efficiency as ASO delivered by oligofectamine. The modularity, flexibility and common method of conjugation may prove to be a useful general approach for the targeted delivery of ASOs, as well as other nucleic acids to cells.
Chemotherapy-induced neuropathic pain is a debilitating and dose-limiting side effect. Oxaliplatin is a third-generation platinum and antineoplastic compound that is commonly used to treat colorectal cancer and commonly yields neuropathic side effects. Available drugs such as duloxetine provide only modest benefits against oxaliplatin-induced neuropathy. A particularly disruptive symptom of oxaliplatin is painful cold sensitivity, known as cold allodynia. Previous studies of the Conus regius peptide, RgIA, and its analogs have demonstrated relief from oxaliplatin-induced cold allodynia, yielding improvement that persists even after treatment cessation. Moreover, underlying inflammatory and neuronal protection were shown at the cellular level in chronic constriction nerve injury models, consistent with disease-modifying effects. Despite these promising preclinical outcomes, the underlying molecular mechanism of action of RgIA4 remains an area of active investigation. This study aimed to determine the necessity of the α9 nAChR subunit and potential T-cell mechanisms in RgIA4 efficacy against acute oxaliplatin-induced cold allodynia. A single dose of oxaliplatin (10 mg/kg) was utilized followed by four daily doses of RgIA4. Subcutaneous administration of RgIA4 (40 µg/kg) prevented cold allodynia in wildtype mice but not in mice lacking the α9 nAChR-encoding gene, chrna9. RgIA4 also failed to reverse allodynia in mice depleted of CD3+ T-cells. In wildtype mice treated with oxaliplatin, quantitated circulating T-cells remained unaffected by RgIA4. Together, these results show that RgIA4 requires both chrna9 and CD3+ T-cells to exert its protective effects against acute cold-allodynia produced by oxaliplatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.