Tropical peatland fires play a significant role in the context of global warming through emissions of substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from these fires is still poorly developed with few studies reporting the associated mass of peat consumed. Furthermore, spatial and temporal variations in burn depth have not been previously quantified. This study presents the first spatially explicit investigation of fire-driven tropical peat loss and its variability. An extensive airborne LiDAR (Light Detection and Ranging) dataset was used to develop a pre-fire peat surface modeling methodology, enabling the spatially differentiated quantification of burned area depth over the entire burned area. We observe a strong interdependence between burned area depth, fire frequency and distance to drainage canals. For the first time, we show that relative burned area depth decreases over the first four fire events and is constant thereafter. Based on our results, we revise existing peat and carbon loss estimates for recurrent fires in drained tropical peatlands. We suggest values for the dry mass of peat fuel consumed that are 206 t ha -1 for initial fires, reducing to 115 t ha -1 for second, 69 t ha -1 for third and 23 t ha -1 for successive fires, which are 58% to 7% of the current IPCC Tier 1 default value for all fires.In our study area, this results in carbon losses of 114, 64, 38 and 13 t C ha -1 for first to fourth fires, respectively. Furthermore, we show that with increasing proximity to drainage canals both burned area depth and the probability of recurrent fires increase and present equations explaining burned area depth as a function of distance to drainage canal. This improved knowledge enables a more accurate approach to emissions accounting and will support IPCC Tier 2 reporting of fire emissions.
This study provides a comparative analysis of two Sentinel-1 and one Sentinel-2 burned area (BA) detection and mapping algorithms over 10 test sites (100 × 100 km) in tropical and sub-tropical Africa. Depending on the site, the burned area was mapped at different time points during the 2015–2016 fire seasons. The algorithms relied on diverse burned area (BA) mapping strategies regarding the data used (i.e., surface reflectance, backscatter coefficient, interferometric coherence) and the detection method. Algorithm performance was compared by evaluating the detected BA agreement with reference fire perimeters independently derived from medium resolution optical imagery (i.e., Landsat 8, Sentinel-2). The commission (CE) and omission errors (OE), as well as the Dice coefficient (DC) for burned pixels, were compared. The mean OE and CE were 33% and 31% for the optical-based Sentinel-2 time-series algorithm and increased to 66% and 36%, respectively, for the radar backscatter coefficient-based algorithm. For the coherence based radar algorithm, OE and CE reached 72% and 57%, respectively. When considering all tiles, the optical-based algorithm provided a significant increase in agreement over the Synthetic Aperture Radar (SAR) based algorithms that might have been boosted by the use of optical datasets when generating the reference fire perimeters. The analysis suggested that optical-based algorithms provide for a significant increase in accuracy over the radar-based algorithms. However, in regions with persistent cloud cover, the radar sensors may provide a complementary data source for wall to wall BA detection.
With the recession of the Aral Sea in Central Asia, once the world's fourth largest lake, a huge new saline desert emerged which is nowadays called the Aralkum. Saline soils in the Aralkum are a major source for dust and salt storms in the region. The aim of this study was to analyze the spatio-temporal land cover change dynamics in the Aralkum and discuss potential implications for the recent and future dust and salt storm activity in the region. MODIS satellite time series were classified from 2000-2008 and change of land cover was quantified. The Aral Sea desiccation accelerated between 2004 and 2008. The area of sandy surfaces and salt soils, which bear the greatest dust and salt storm generation potential increased by more than 36 %. In parts of the Aralkum desalinization of soils was found to take place within 4-8 years. The implication of the ongoing regression of the Aral Sea is that the expansion of saline surfaces will continue. Knowing the spatio-temporal dynamics of both the location and the surface characteristics of the source areas for dust and salt storms allows drawing conclusions about the potential hazard degree of the dust load. The remote-sensing-based land cover assessment presented in this study could be coupled with existing knowledge on the location of source areas for an early estimation of trends in shifting dust composition. Opportunities, limits, and requirements of satellite-based land cover classification and change detection in the Aralkum are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.