The transmembrane distribution of the major aminophospholipids in the bovine retinal rod outer segment disk membrane, phosphatidylethanolamine and phosphatidylserine, was determined using a novel pair of permeable and impermeable covalent modification reagents. The values for the percentages of phosphatidylethanolamine and phosphatidylserine in the outer monolayer were calculated from a simple expression which takes into account the leakage of impermeable reagent into the disk lumen as monitored by the extent of labeling of lysine entrapped in the lumen. We infer from our results that at least 73 to 87% of the disk phosphatidylethanolamine and 77 to 88% of the disk phosphatidylserine are in the outer disk membrane monolayer. The fatty acid composition of the inner aminophospholipids is slightly more saturated than the outer aminophospholipids. Calculations using the lateral surface areas occupied by the disk membrane lipids suggest that 65 to 100% of the disk phosphatidylcholine is on the inner membrane surface. Since the disk phosphatidylcholine is also somewhat more saturated than the phosphatidylethanolamine and phosphatidylserine of the outer monolayer, the total inner membrane monolayer fatty acid composition is more saturated than that of the outer monolayer fatty acid composition.
Twenty esters of 3 alpha- and 3beta-hydroxy(nor)tropanes and two amides of 3 alpha-aminotropane were prepared with substituted benzoic acids. These (nor)tropeines inhibited [(3)H]strychnine binding to glycine receptors in synaptosomal membranes of rat spinal cord. A ternary allosteric model was applied to determine the dissociation constants (K(A)) of the tropeines having strong negative cooperativities with [(3)H]strychnine binding (alpha > 10). K(A) values about 10 nM are well below those of known allosteric agents. Low concentrations (0.1K(A)) of the (nor)tropeines potentiated the displacing effects of glycine. Positive cooperativity with glycine (beta < 1) decreased with the increase in concentration and binding affinity of tropeines. Displacing potencies were also measured for [(3)H]granisetron binding to 5-HT(3) type serotonin receptors of rat cerebral cortex. Selectivities to glycine receptors versus 5-HT(3) receptors varied within 4 orders of magnitude. Nortropeines might serve as a lead to high-affinity selective allosteric modulators of glycine receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.