To select a Saccharomyces cerevisiae reference strain amenable to experimental techniques used in (molecular) genetic, physiological and biochemical engineering research, a variety of properties were studied in four diploid, prototrophic laboratory strains. The following parameters were investigated: 1) maximum specific growth rate in shake-flask cultures; 2) biomass yields on glucose during growth on defined media in batch cultures and steady-state chemostat cultures under controlled conditions with respect to pH and dissolved oxygen concentration; 3) the critical specific growth rate above which aerobic fermentation becomes apparent in glucose-limited accelerostat cultures; 4) sporulation and mating efficiency; and 5) transformation efficiency via the lithium-acetate, bicine, and electroporation methods. On the basis of physiological as well as genetic properties, strains from the CEN.PK family were selected as a platform for cell-factory research on the stoichiometry and kinetics of growth and product formation.
Lovastatin is a secondary metabolite produced by Aspergillus terreus. A chemically defined medium was developed in order to investigate the influence of carbon and nitrogen sources on lovastatin biosynthesis. Among several organic and inorganic defined nitrogen sources metabolized by A. terreus, glutamate and histidine gave the highest lovastatin biosynthesis level. For cultures on glucose and glutamate, lovastatin synthesis initiated when glucose consumption levelled off. When A. terreus was grown on lactose, lovastatin production initiated in the presence of residual lactose. Experimental results showed that carbon source starvation is required in addition to relief of glucose repression, while glutamate did not repress biosynthesis. A threefold-higher specific productivity was found with the defined medium on glucose and glutamate, compared to growth on complex medium with glucose, peptonized milk, and yeast extract.In filamentous fungi many secondary metabolites with complex chemical structure are synthesized via the polyketide pathway (15,33,37). Lovastatin, monacolin J, monacolin L, and mevastatin can be produced by Monascus ruber (7), Penicillium brevicompactum, and Aspergillus terreus (1, 36). Lovastatin is an inhibitor of the enzyme hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase (mevalonate:NADP ϩ oxidoreductase [EC 1.1.1.34]) that catalyzes the reduction of HMG-CoA to mevalonate during synthesis of cholesterol (14,23,36). The biosynthetic pathway of lovastatin in A. terreus has been investigated by nuclear magnetic resonance and mass spectroscopy (5,26,38). These studies concluded that lovastatin is composed of two distinct polyketide chains joined through an ester linkage. Proof that these two polyketides are assembled by two discrete polyketide synthases came from the cloning and partial characterization of the lovastatin biosynthetic gene cluster from A. terreus (16,18).Despite the knowledge of the genes and the enzymes involved in the biosynthetic pathway, little is known about the regulation and the physiology of lovastatin biosynthesis. Reported growth and production conditions for lovastatin are from batch fermentations performed on media with glucose and a complex nitrogen source (1,4,13,22,28). Both carbon and nitrogen sources are thought to exert complex regulation on gene expression and enzyme activities for polyketide synthesis, possibly at the level of catabolite repression or signaling due to limitation in growth rate or substrate limitation.The objective of this work was to investigate the influence of glucose and nitrogen source on the physiology of A. terreus and lovastatin production. Several carbon and nitrogen sources were tested in order to develop a chemically defined medium. The aim was to monitor biomass formation and lovastatin production in relation to the consumption pattern of carbon and nitrogen sources. We show here that although growth occurred on a large variety of substrates, the choice of nitrogen source had a major impact on lovastatin production. In addition, l...
Strains and vectors for protein expression and secretion have been developed in the yeast Yarrowia lipolytica. Host strains were constructed with non-reverting auxotrophic markers, deletions of protease-encoding genes, and carrying a docking platform. To drive transcription, either the synthetic hp4d or the inducible POX2 promoter were used. Protein secretion is either directed by the targeting sequence of the alkaline extracellular protease or the extracellular lipase (LIP2p) signal sequence. We describe a set of vectors based on these promoters, targeting sequences and two URA3 alleles as selection markers. The wild-type URA3 allele, ura3d1, was used for single-copy integration and a mutant URA3 allele, ura3d4, was used to select for multi-copy integration into the genome. These vectors were used to express the Y. lipolytica extracellular lipase LIP2p and the Aspergillus oryzae leucine amino peptidase II. Lipase production under the control of the hp4d promoter by a strain containing a single copy reached 1000 U ml(-1) in shake flasks, while a strain containing multiple integrations reached 2000 U ml(-1) in shake flasks, 11500 U ml(-1) in batch and 90500 U ml(-1) in fed batch. Leucine amino peptidase production under the control of the hp4d promoter reached 320 mU ml(-1) in batch with a mono-copy lapA integrant and 28000 mU ml(-1) in fed batch with a multi-copy transformant.
Strains and vectors for protein expression and secretion have been developed in the yeast Yarrowia lipolytica. Host strains were constructed with non-reverting auxotrophic markers, deletions of protease-encoding genes, and carrying a docking platform. To drive transcription, either the synthetic hp4d or the inducible POX2 promoter were used. Protein secretion is either directed by the targeting sequence of the alkaline extracellular protease or the extracellular lipase (LIP2p) signal sequence. We describe a set of vectors based on these promoters, targeting sequences and two URA3 alleles as selection markers. The wild-type URA3 allele, ura3d1, was used for single-copy integration and a mutant URA3 allele, ura3d4, was used to select for multi-copy integration into the genome. These vectors were used to express the Y. lipolytica extracellular lipase LIP2p and the Aspergillus oryzae leucine amino peptidase II. Lipase production under the control of the hp4d promoter by a strain containing a single copy reached 1000 U ml(-1) in shake flasks, while a strain containing multiple integrations reached 2000 U ml(-1) in shake flasks, 11500 U ml(-1) in batch and 90500 U ml(-1) in fed batch. Leucine amino peptidase production under the control of the hp4d promoter reached 320 mU ml(-1) in batch with a mono-copy lapA integrant and 28000 mU ml(-1) in fed batch with a multi-copy transformant.
Decreases in enzyme activity often have little effect on the flux carried by the pathway. Similarly, up-modulation of single genes, and hence of the dependent enzyme concentrations, is frequently found to be ineffective in increasing the flux in the pathway in which the enzyme occurs. This insensitivity to enzyme variation is demonstrated experimentally for five separate enzymes in the tryptophan synthesis system of yeast, first by down-modulation of the gene dose and secondly by increasing the dose using multi-copy vectors. Such a lack of response is discussed in terms of the concepts of metabolic control analysis. When these five enzymes, however, were simultaneously increased by a multi-copy vector carrying all five genes, a substantial elevation of the flux to tryptophan was observed. These findings revealed a new phenomenon, namely the more than additive effects on the flux of simultaneous elevations of several enzyme activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.