SUMMARY Understanding fracturing processes and the hydromechanical relation to induced seismicity is a key question for enhanced geothermal systems (EGS). Commonly massive fluid injection, predominately causing hydroshearing, are used in large-scale EGS but also hydraulic fracturing approaches were discussed. To evaluate the applicability of hydraulic fracturing techniques in EGS, six in situ, multistage hydraulic fracturing experiments with three different injection schemes were performed under controlled conditions in crystalline rock at the Äspö Hard Rock Laboratory (Sweden). During the experiments the near-field ground motion was continuously recorded by 11 piezoelectric borehole sensors with a sampling rate of 1 MHz. The sensor network covered a volume of 30×30×30 m around a horizontal, 28-m-long injection borehole at a depth of 410 m. To extract and characterize massive, induced, high-frequency acoustic emission (AE) activity from continuous recordings, a semi-automated workflow was developed relying on full waveform based detection, classification and location procedures. The approach extended the AE catalogue from 196 triggered events in previous studies to more than 19 600 located AEs. The enhanced catalogue, for the first time, allows a detailed analysis of induced seismicity during single hydraulic fracturing experiments, including the individual fracturing stages and the comparison between injection schemes. Beside the detailed study of the spatio-temporal patterns, event clusters and the growth of seismic clouds, we estimate relative magnitudes and b-values of AEs for conventional, cyclic progressive and dynamic pulse injection schemes, the latter two being fatigue hydraulic fracturing techniques. While the conventional fracturing leads to AE patterns clustered in planar regions, indicating the generation of a single main fracture plane, the cyclic progressive injection scheme results in a more diffuse, cloud-like AE distribution, indicating the activation of a more complex fracture network. For a given amount of hydraulic energy (pressure multiplied by injected volume) pumped into the system, the cyclic progressive scheme is characterized by a lower rate of seismicity, lower maximum magnitudes and significantly larger b-values, implying an increased number of small events relative to the large ones. To our knowledge, this is the first direct comparison of high resolution seismicity in a mine-scale experiment induced by different hydraulic fracturing schemes.
The 2013 seismic sequence at the Castor injection platform offshore Spain, including three earthquakes of magnitude 4.1, occurred during the initial filling of a planned Underground Gas Storage facility. The Castor sequence is one of the most important cases of induced seismicity in Europe and a rare example of seismicity induced by gas injection into a depleted oil field. Here we use advanced seismological techniques applied to an enhanced waveform dataset, to resolve the geometry of the faults, develop a greatly enlarged seismicity catalog and record details of the rupture kinematics. The sequence occurred by progressive fault failure and unlocking, with seismicity initially migrating away from the injection points, triggered by pore pressure diffusion, and then back again, breaking larger asperities loaded to higher stress and producing the largest earthquakes. Seismicity occurred almost exclusively on a secondary fault, located below the reservoir, dipping opposite from the reservoir bounding fault.
The ability to control induced seismicity in energy technologies such as geothermal heat and shale gas is an important factor in improving the safety and reducing the seismic hazard of reservoirs. As fracture propagation can be unavoidable during energy extraction, we propose a new approach that optimises the radiated seismicity and hydraulic energy during fluid injection by using cyclic- and pulse-pumping schemes. We use data from laboratory-, mine-, and field-scale injection experiments performed in granitic rock and observe that both the seismic energy and the permeability-enhancement process strongly depend on the injection style and rock type. Replacing constant-flow-rate schemes with cyclic pulse injections with variable flow rates (1) lowers the breakdown pressure, (2) modifies the magnitude-frequency distribution of seismic events, and (3) has a fundamental impact on the resulting fracture pattern. The concept of fatigue hydraulic fracturing serves as a possible explanation for such rock behaviour by making use of depressurisation phases to relax crack-tip stresses. During hydraulic fatigue, a significant portion of the hydraulic energy is converted into rock damage and fracturing. This finding may have significant implications for managing the economic and physical risks posed to communities affected by fluid-injection-induced seismicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.