Stability, boundedness and existence of a unique periodic solution to certain second order nonlinear delay differential equations is discussed. By employing Lyapunov's direct (or second) method, a complete Lyapunov functional is constructed and used to establish sufficient conditions, on the nonlinear terms, that guarantee uniform asymptotic stability, uniform ultimate boundedness and existence of a unique periodic solution. Obtained results complement many outstanding recent results in the literature. Finally, examples are given to show the effectiveness of our method and correctness of our results.
We employ Lyapunov's second method to investigate uniform asymptotic stability, ultimate boundedness and uniform ultimate boundedness of solutions to certain third-order non-linear differential equations. Our results improve some well-known results in the literature.
In this article, Lyapunov second method is used to obtain criteria for uniform ultimate boundedness and asymptotic behaviour of solutions of nonlinear differential equations of the third order. The results obtained in this investigation include and extend some well known results on third order nonlinear differential equations in the literature.Subjclass [2000] : 34D20, 34D40.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.