We show that the HSV-1 structural protein VP22 has the remarkable property of intercellular transport, which is so efficient that following expression in a subpopulation the protein spreads to every cell in a monolayer, where it concentrates in the nucleus and binds chromatin. VP22 movement was observed both after delivery of DNA by transfection or microinjection and during virus infection. Moreover, we demonstrate that VP22 trafficking occurs via a nonclassical Golgi-independent mechanism. Sensitivity to cytochalasin D treatment suggests that VP22 utilizes a novel trafficking pathway that involves the actin cytoskeleton. In addition, we demonstrate intercellular transport of a VP22 fusion protein after endogenous synthesis or exogenous application, indicating that VP22 may have potential in the field of protein delivery.
We have studied the abilities of different transactivation domains to stimulate the initiation and elongation (postinitiation) steps of RNA polymerase II transcription in vivo. Nuclear run-on and RNase protection analyses revealed three classes of activation domains: Sp1 and CTF stimulated initiation (type I); human immunodeficiency virus type 1 Tat fused to a DNA binding domain stimulated predominantly elongation (type IIA); and VP16, p53, and E2F1 stimulated both initiation and elongation (type IIB). A quadruple point mutation of VP16 converted it from a type IIB to a type I activator. Type I and type IIA activators synergized with one another but not with type IIB activators. This observation implies that synergy can result from the concerted action of factors stimulating two different steps in transcription: initiation and elongation. The functional differences between activators may be explained by the different contacts they make with general transcription factors. In support of this idea, we found a correlation between the abilities of activators, including Tat, to stimulate elongation and their abilities to bind TFIIH.Stimulation of eukaryotic gene expression requires sequence-specific factors with DNA binding domains and activation domains that interact with the general transcription factors (GTFs) and recruit RNA polymerase II (pol II) to the promoter (3, 65). In vivo the transcriptionally active form of pol II is probably a holoenzyme complex which contains a number of the GTFs as well as other polypeptides (36). Different activation domains interact with different GTFs, including TFIIB (44), TFIID (17,19,63), and TFIIF (76). These interactions are thought to recruit, stabilize, and/or modify the activity of the pol II holoenzyme.We recently demonstrated that the activation domains of p53, VP16, and E2F1 bind directly to TFIIH (50a, 72). TFIIH is a multisubunit factor, different forms of which are required for both transcription and nucleotide excision repair of DNA (9). TFIIH is the only GTF which has enzymatic activities: it has two helicase subunits and a cyclin-dependent protein kinase subunit which phosphorylates the pol II large-subunit C-terminal domain (CTD) (12,52,58,60). Both of these enzymatic activities are implicated in steps in transcription which occur shortly after initiation of the RNA chain. First, a helicase is required for efficient formation of open complexes and for promoter clearance on linear templates in vitro (20). Second, when paused polymerases resume elongation on several Drosophila genes in vivo, the CTD becomes phosphorylated, suggesting a possible role for TFIIH kinase in regulating elongation (50, 70). Furthermore, inhibitors of the TFIIH kinase inhibit elongation under activated (74), but not basal (57), transcription conditions.In vivo, rate-limiting steps after initiation have been well documented for a number of genes. For example, polymerases stall 20 to 40 bases downstream of the start sites in the Drosophila hsp70 and human c-myc genes (38, 51, 64) and terminate...
We reconstructed the regulated induction of delayed-early (DE) transcription that occurs during herpes simplex virus (HSV) infection by using a transient expression system in which recombinant target genes were cotransfected into Vero cells together with intact activating genes. Plasmids containing cloned HSV-1 or HSV-2 immediate-early (IE) genes stimulated by up to 100-fold the expression from recombinant constructs containing the bacterial chloramphenicol acetyltransferase (CAT) gene under the control of the DE promoter/regulatory region from the genes for an HSV-2 38,000-molecular-weight (38K) protein and the HSV-1 thymidine kinase. This activation was specific to hybrid genes containing DE regulatory regions since no significant increases in expression were observed in cotransfection experiments with the CAT gene without any promoter region or under the control of a number of other regulatory regions, including an HSV-1 IE regulatory region, the complete or enhancerless early regulatory region of simian virus 40, and an inducible cellular promoter/regulatory region. By using a variety of cotransfected plasmids containing individual or different combinations of HSV-1 or HSV-2 IE genes, we show that of the five known IE genes, two, those coding for the 175K and 110K polypeptides, each possessed the ability to stimulate expression from both DE promoters. Cleavage of the input plasmids within the known coding regions for the 175K and 110K proteins abolished stimulation of DE/CAT gene expression, whereas cleavage outside the coding regions had no effect on stimulation. We conclude that stimulation of CAT expression occurred exclusively by a transactivation mechanism in which the products encoded by these IE genes acted on the DE hybrid constructs at the transcription level. No transcriptional stimulatory function was demonstrated for the IE 68K and 63K proteins, although our results indicate that the IE 12K protein may augment the DE stimulatory activity of the 175K and 110K proteins.
The human host cell factor (HCF) is expressed in a variety of adult and fetal tissues, and its gene is conserved in animals as diverse as mammals and insects. However, its only known function is to stabilize the herpes simplex virus virion transactivator VP16 in a complex with the cellular POU domain protein Oct-1 and cis-acting regulatory elements in promoters of immediate-early viral genes. To identify a cellular function for HCF, we used the yeast two-hybrid system to identify a cellular ligand for HCF. This protein, Luman, appears to be a cyclic AMP response element (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.