We use stock exchange message data to quantify the negative aspect of high-frequency trading, known as “latency arbitrage.” The key difference between message data and widely familiar limit order book data is that message data contain attempts to trade or cancel that fail. This allows the researcher to observe both winners and losers in a race, whereas in limit order book data you cannot see the losers, so you cannot directly see the races. We find that latency arbitrage races are very frequent (about one per minute per symbol for FTSE 100 stocks), extremely fast (the modal race lasts 5–10 millionths of a second), and account for a remarkably large portion of overall trading volume (about 20%). Race participation is concentrated, with the top six firms accounting for over 80% of all race wins and losses. The average race is worth just a small amount (about half a price tick), but because of the large volumes the stakes add up. Our main estimates suggest that races constitute roughly one-third of price impact and the effective spread (key microstructure measures of the cost of liquidity), that latency arbitrage imposes a roughly 0.5 basis point tax on trading, that market designs that eliminate latency arbitrage would reduce the market’s cost of liquidity by 17%, and that the total sums at stake are on the order of $5 billion per year in global equity markets alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.