This research paper presents a step by step conceptual design and life prediction approach for the design, modeling and simulation of head shaft of a belt bucket elevator, to be used for conveying grains to a height of 33.5 m and at the rate of 200 tons/h. output. For this elevator system, the force and torque acting on the head shaft as well as the bending moment were calculated. Furthermore, the diameter of each cross section of the shaft was determined taking into consideration the geometric and fatigue stress concentration factors, due to shoulders which contribute significantly to most fatigue failures of shafts. The stress induced on the shaft by the force and the factor of safety for each cross section of the shaft was calculated using the DE-Goodman criterion. The model of the shaft was created from the calculated diameters and subjected to static and fatigue analysis using SolidWorks FEA. The results were validated by comparing the values from the FEA and the calculated values for stress and factor of safety of the critical section of the shaft, which showed an equivalent value. The FEA gave a fatigue load factor greater than one, which signifies that the shaft will not go into failure mode within the infinite life cycle of the shaft. The value of the fatigue strength obtained from FEA was higher than the value for the maximum von misses stress of the shaft, this result shows that the head shaft will sustain the loading stresses over a finite life prediction. This research is significant because the stress induced forces on the head shaft from each component of the elevator system were properly identified and analyzed so as to obtain precise results for life prediction.
This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine system development, the material for each component of the machine system was first selected, the boom length, maximum boom angle, force and stroke length of each hydraulic cylinder, the hydraulic pump pressure, base weight, permissible weight of the cutting system and power required were then calculated in the design analysis. Furthermore, from the calculated parameters, the model of the system was created using SolidWorks engineering software, the model was developed and tested. The result shows that the cutting time of the system for one bunch of palm fruit was longer when compared to conventional systems. It was concluded that though the machine is maintenance friendly and portable, further improvements in its design are necessary so as to develop a system that will give desirable economic output at a shorter time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.