Recently, it has been shown by several groups that the electrical characteristics of organic thin‐film transistors (OTFTs) can be significantly influenced by depositing self‐assembled monolayers (SAMs) at the organic semiconductor/dielectric interface. In this work, the effect of such SAMs on the transfer characteristics and especially on the threshold voltage of OTFTs is investigated by means of two‐dimensional drift‐diffusion simulations. The impact of the SAM is modeled either by a permanent space charge layer that can result from chemical reactions with the active material, or by a dipole layer representing an array of ordered dipolar molecules. It is demonstrated that, in both model cases, the presence of the SAM significantly changes the transfer characteristics. In particular, it gives rise to a modified, effective gate voltage Veff that results in a rigid shift of the threshold voltage, ΔVth, relative to a SAM‐free OTFT. The achievable amount of threshold voltage shift, however, strongly depends on the actual role of the SAM. While for the investigated device dimensions, an organic SAM acting as a dipole layer can realistically shift the threshold voltage only by a few volts, the changes in the threshold voltage can be more than an order of magnitude larger when the SAM leads to charges at the interface. Based on the analysis of the different cases, a route to experimentally discriminate between SAM‐induced space charges and interface dipoles is proposed. The developed model allows for qualitative description of the behavior of organic transistors containing reactive interfacial layers; when incorporating rechargeable carrier trap states and a carrier density‐dependent mobility, even a quantitative agreement between theory and recent experiments can be achieved.
The degenerate and nondegenerate two-photon absorption (2PA) spectra for a symmetric and an asymmetric fluorene derivative were experimentally measured in order to determine the effect of intermediate state resonance enhancement (ISRE) on the 2PA cross section delta. The ability to tune the individual photon energies in the nondegenerate 2PA (ND-2PA) process afforded a quantitative study of the ISRE without modifying the chemical structure of the investigated chromophores. Both molecules exhibited resonant enhancement of the nonlinearity with the asymmetric compound showing as much as a twentyfold increase in delta. Furthermore, the possibility of achieving over a one order of magnitude enhancement of the nonlinearity reveals the potential benefits of utilizing ND-2PA for certain applications. To model ISRE, we have used correlated quantum-chemical methods together with the perturbative sum-over-states (SOS) expression. We find strong qualitative and quantitative correlation between the experimental and theoretical results. Finally, using a simplified three-level model for the SOS expression, we provide intuitive insight into the process of ISRE for ND-2PA.
Three new dipolar chromophores based on a diaklyaminophenyl donor, a pyrrole auxiliary donor, a thiazole auxiliary acceptor, and strong heterocyclic acceptors have been synthesized. For one of these compounds we have measured a very large non-degenerate two-photon cross section of ca. 1500 GM in the near-IR telecommunications range using a pump-probe technique. Calculations indicate the cross section for degenerate two-photon absorption is likely to be ca. 60% of this value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.