CD70 and CD27 are costimulatory molecules that provide essential signals for the expansion and differentiation of CD8(+) T cells. Here, we show that CD27-driven costimulation lowered the threshold of T cell receptor activation on CD8(+) T cells and enabled responses against low-affinity antigens. Using influenza infection to study in vivo consequences, we found that CD27-driven costimulation promoted a CD8(+) T cell response of overall low affinity. These qualitative effects of CD27 on T cell responses were maintained into the memory phase. On a clonal level, CD27-driven costimulation established a higher degree of variety in memory CD8(+) T cells. The benefit became apparent when mice were reinfected, given that CD27 improved CD8(+) T cell responses against reinfection with viral variants, but not with identical virus. We propose that CD27-driven costimulation is a strategy to generate memory clones that have potential reactivity to a wide array of mutable pathogens.
Objective Results from anti‐CD20 therapies demonstrate that B‐ and T‐cell interaction is a major driver of multiple sclerosis (MS). The local presence of B‐cell follicle‐like structures and oligoclonal bands in MS patients indicates that certain B cells infiltrate the central nervous system (CNS) to mediate pathology. Which peripheral triggers underlie the development of CNS‐infiltrating B cells is not fully understood. Methods Ex vivo flow cytometry was used to assess chemokine receptor profiles of B cells in blood, cerebrospinal fluid, meningeal, and brain tissues of MS patients (n = 10). Similar analyses were performed for distinct memory subsets in the blood of untreated and natalizumab‐treated MS patients (n = 38). To assess T‐bet(CXCR3)+ B‐cell differentiation, we cultured B cells from MS patients (n = 21) and healthy individuals (n = 34) under T helper 1‐ and TLR9‐inducing conditions. Their CNS transmigration capacity was confirmed using brain endothelial monolayers. Results CXC chemokine receptor 3 (CXCR3)‐expressing B cells were enriched in different CNS compartments of MS patients. Treatment with the clinically effective drug natalizumab prevented the recruitment of CXCR3high IgG1+ subsets, corresponding to their increased ability to cross CNS barriers in vitro. Blocking of interferon‐γ (IFNγ) reduced the transmigration potential and antigen‐presenting function of these cells. IFNγ‐induced B cells from MS patients showed increased T‐bet expression and plasmablast development. Additional TLR9 triggering further upregulated T‐bet and CXCR3, and was essential for IgG1 switching. Interpretation This study demonstrates that T‐bethigh IgG1+ B cells are triggered by IFNγ and TLR9 signals, likely contributing to enhanced CXCR3‐mediated recruitment and local reactivity in the CNS of MS patients. ANN NEUROL 2019;86:264–278
Regulatory B cells (Breg) have been described as a specific immunological subsets in several mouse models. Identification of a human counterpart has remained troublesome, because unique plasma membrane markers or a defining transcription factor have not been identified. Consequently, human Bregs are still primarily defined by production of IL-10. In this study, we sought to elucidate if in vitro-induced human IL-10 producing B cells are a dedicated immunological subset. Using deep immune profiling by multicolor flow cytometry and t-SNE analysis, we show that the majority of cells induced to produce IL-10 co-express pro-inflammatory cytokines IL-6 and/or TNFα. No combination of markers can be identified to define human IL-10+TNFα−IL-6− B cells and rather point to a general activated B cell phenotype. Strikingly, upon culture and restimulation, a large proportion of formerly IL-10 producing B cells lose IL-10 expression, showing that induced IL-10 production is not a stable trait. The combined features of an activated B cell phenotype, transient IL-10 expression and lack of subset-defining markers suggests that in vitro-induced IL-10 producing B cells are not a dedicated subset of regulatory B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.