This paper presents PrivacyGrid − a framework for supporting anonymous location-based queries in mobile information delivery systems. The PrivacyGrid framework offers three unique capabilities. First, it provides a location privacy protection preference profile model, called location P3P, which allows mobile users to explicitly define their preferred location privacy requirements in terms of both location hiding measures (e.g., location k-anonymity and location l-diversity) and location service quality measures (e.g., maximum spatial resolution and maximum temporal resolution). Second, it provides fast and effective location cloaking algorithms for location k-anonymity and location l-diversity in a mobile environment. We develop dynamic bottomup and top-down grid cloaking algorithms with the goal of achieving high anonymization success rate and efficiency in terms of both time complexity and maintenance cost. A hybrid approach that carefully combines the strengths of both bottom-up and top-down cloaking approaches to further reduce the average anonymization time is also developed. Last but not the least, PrivacyGrid incorporates temporal cloaking into the location cloaking process to further increase the success rate of location anonymization. We also discuss PrivacyGrid mechanisms for supporting anonymous location queries. Experimental evaluation shows that the PrivacyGrid approach can provide close to optimal location k-anonymity as defined by per user location P3P without introducing significant performance penalties.
No abstract
Commercial aerial imagery websites, such as Google Maps, MapQuest, Microsoft Virtual Earth, and Yahoo! Maps, provide high-seamless orthographic imagery for many populated areas, employing sophisticated equipment and proprietary image postprocessing pipelines. There are many areas of the world with poor coverage where locals might benefit from recent, high-resolution orthographic imagery, but which do not fit into the schedules and scaling model of the big sites.This paper describes MapStitcher, a system that orthorectifies and geographically registers imagery using only low-cost capturing equipment. MapStitcher combines manually-entered relationships between images and known ground references with a MOPs-based image-stitching technique that automatically discovers image-toimage relationships. Our image registration pipeline first extracts and matches feature points, then clusters images, then uses RANSAC-initialized bundle adjustment to simultaneously optimize all constraints over the entire image set. Simultaneous optimization balances the requirements of precise stitching and absolute placement accuracy. We used this technique to image a portion of the Skagit River Valley in the vicinity of the town of Concrete, WA (pop. 790) at 0.15 m/pixel. Our technique is more accurate than stitching followed by "rubber-sheeting" (deforming the stitched image into global coordinates), while it also requires less effort and produces a better-stitched composite than rubber-sheeting images separately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.