40The interaction between xylem phenology and climate assesses forest growth and productivity 41 and carbon storage across biomes under changing environmental conditions. We tested the annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C -1 .
54April-May temperatures produced the best models predicting the dates of wood formation.
55Our findings demonstrated the uniformity of the process of wood formation and the 56 importance of the environmental conditions occurring at the time of growth resumption.
57Under warming scenarios, the period of wood formation might lengthen synchronously in the 58
Long-term variation in tree-ring widths and intra-annual dynamics of cambial activity and tree-ring formation in 2006 were studied in mature beech (Fagus sylvatica L.) trees at a typical forest site near Ljubljana (46°N, 14°40 0 E, 400 m a.s.l.) and related to leaf phenology and climate data. Tree-ring widths were nega-
The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.