The article is aimed to investigate a shift of transformation temperatures of C-Mn-Al HSLA steel with different cooling rates. The transformation temperatures from austenite to ferrite have been determined by dilatometry using thermal-mechanical simulator Gleeble 1500D. To define the start and finishing temperatures of the austenite-ferrite transformation intersectional method was used. Effect of cooling rate on transformation temperature has been evaluated for 0.17, 1, 5, 10, 15, 20, 25°C.s-1. There was found out that rising the cooling rate results in moving transformation temperature range to lower temperatures. The transformation temperatures have been also compared with temperatures calculated using equations of several authors. Some of them have considered cooling rates only. Cooling rates have effect on final microstructure. The effect has been evaluated by measuring hardness (HV10) relating the cooling rates from 0.17 to 25°C.s-1. Increasing cooling rates resulted in increase of hardness. Moreover, Thermo-Calc software was used to determine the Ae3 and Ae1 equilibrium temperatures. Equilibrium transformation temperatures Ae3-Ae1 were higher than experimentally measured by dilatometric method using Gleeble 1500D.
The article aims to investigate the effect of different austenitization temperatures on the hot ductility of C-Mn-Al High-Strength Low-Alloy (HSLA) steel. The thermo-mechanical simulator of physical processes Gleeble 1500D was used for steel hot ductility study. Hot ductility was estimated by measuring the reduction of area after static tensile testing carried out at temperatures in the range 600 °C to 1200 °C with the step of 50 °C. Evaluation of fracture surfaces after austenitization at 1250 °C and 1350 °C with a holding time of the 30 s showed significant differences in the character of the fracture as well as in the ductility. The fracture surfaces and the microstructure near the fracture surfaces of samples at a test temperature of 1000 °C for both austenitization temperatures were analyzed by Scanning Electron Microscopy (SEM), Light Optical Microscopy (LOM), and AZtec Feature analysis (particle analysis of SEM). AlN and AlN-MnS precipitates at grain boundaries detected by the detailed metallographic analysis were identified as the main causes of plasticity trough in the evaluated steel. Moreover, using Thermo-Calc software, it was found that AlN particles precipitate from solid solution below the temperature of 1425 °C.
In terms of the current trend of research and development of new materials and optimization of current materials in the automotive industry, the greatest attention is paid to progressive high-strength dual-phase (DP) steels with increased stampability, which are designed for cold stamping for specific internal car body components of the current market. New grades of DP steels provide a combination of high strength and good formability and contribute to the weight savings of vehicle parts by 10 to 20 %, compared to current DP grades. Thanks to their top properties, DP steels with increased formability can absorb more crash energy using less steel. As a result, high-strength DP780GI and DP780GI-HF materials of first generation (hereinfater DP780GI-HF) were analyzed. The stampability improvement of DP steels was demonstrated by the experimentally determined Forming Limit Curves for both steels.
Material used for screw production was investigated due to its inconvenient properties which caused the screw breaking on threads or in the head during the installation. Chemical composition of analyzed material corresponded with standard STN 17153 according to technological drawing for specific product. The metallographic analysis showed that failure of screws happened due to improper microstructure resulting from unsuitable thermal treatment of material. Fine inclusions based on aluminum nitride (AlN) and chromium carbonitride (Cr(C,N)) were segregated along the ferritic grain boundaries. Coarse aluminum nitride inclusions (AlN) in ferritic matrix affected the character of present fracture surface characterized by cleavage facettes. The fracture was propagated step by step following the planes with the increased concentration of inclusions across the whole cross-section of the screw.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.