The prl1 mutation localized by T-DNA tagging on Arabidopsis chromosome 4-44 confers hypersensitivity to glucose and sucrose. The prl1 mutation results in transcriptional derepression of glucose responsive genes defining a novel suppressor function in glucose signaling. The prl1 mutation also augments the sensitivity of plants to growth hormones including cytokinin, ethylene, abscisic acid, and auxin; stimulates the accumulation of sugars and starch in leaves; and inhibits root elongation. PRL1 encodes a regulatory WD protein that interacts with ATHKAP2, an alpha-importin nuclear import receptor, and is imported into the nucleus in Arabidopsis. Potential functional conservation of PRL1 homologs found in other eukaryotes is indicated by nuclear localization of PRL1 in monkey COS-1 cells and selective interaction of PRL1 with a nuclear protein kinase C-betaII isoenzyme involved in human insulin signaling.
SummaryThe fix-2 mutant of Rhizobium meliloti affected in the invasion of alfalfa root nodules (Inf ¹ /Fix ¹ ) is K þ sensitive and unable to adapt to alkaline pH in the presence of K þ . Using directed Tn5 mutagenesis, we delimited a 6 kb genomic region in which mutations resulted in both Inf ¹ /Fix ¹ and K þ -sensitive phenotypes. In this DNA region, seven open reading frames (ORFs) were identified and the corresponding genes were designated phaA, B, C, D, E, F and G. The putative PhaABC proteins exhibit homology to the subunits of a Na þ /H þ antiporter from an alkalophilic Bacillus strain. Moreover, PhaA and PhaD also show similarity to the ND5 and ND4 subunits of the proton-pumping NADH:ubiquinone oxidoreductase respectively. Computer analysis suggests that all seven proteins are highly hydrophobic with several possible transmembrane domains. Some of these domains were confirmed by generating active alkaline phosphatase fusions. Ion transport studies on phaA mutant cells revealed a defect in K þ efflux at alkaline pH after the addition of a membrane-permeable amine. These results suggest that the pha genes of R. meliloti encode for a novel type of K þ efflux system that is involved in pH adaptation and is required for the adaptation to the altered environment inside the plant.
Bacterial exopolysaccharide (EPS) and lipopolysaccharide (LPS) molecules have been shown to play important roles in plant-bacterium interactions. Here we have demonstrated that the fix-23 loci, which compensate for exo mutations during symbiotic nodule development, are involved in the production of a novel polysaccharide that is rich in 3-deoxy-D-manno-2-octulosonic acid (Kdo) but is not the classical LPS. This molecule is likely to be a surface antigen since antiserum to whole Rhizobium meliloti cells reacts strongly with it, and since mutations in fix-23 result in an inability to produce this polysaccharide and to bind bacteriophage 16-3. It is likely that this Kdo-rich polysaccharide is analogous to certain Escherichia coli K-antigens which are anchored to the membrane via a phospholipid moiety. DNA sequence analysis of one gene cluster of this region revealed that the predicted protein products of six genes exhibit a high degree of homology and similar organization to those of the rat fatty acid synthase multifunctional enzyme domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.