We have developed a simple and flexible mutation detection technology for the discovery and mapping of both known and unknown mutations. This technology is based on a new mismatch-specific DNA endonuclease from celery, Surveyor nuclease, which is a member of the CEL nuclease family of plant DNA endonucleases. Surveyor nuclease cleaves with high specificity at the 3' side of any mismatch site in both DNA strands, including all base substitutions and insertion/deletions up to at least 12 nucleotides. Surveyor nuclease technology involves four steps: (i) PCR to amplify target DNA from both mutant and wild-type reference DNA; (ii) hybridization to form heteroduplexes between mutant and wild-type reference DNA; (iii) treatment of annealed DNA with Surveyor nuclease to cleave heteroduplexes; and (iv) analysis of digested DNA products using the detection/separation platform of choice. The technology is highly sensitive, detecting rare mutants present at as low as 1 in 32 copies. Unlabeled Surveyor nuclease digestion products can be analyzed using conventional gel electrophoresis or high-performance liquid chromatography (HPLC), while end labeled digestion products are suitable for analysis by automated gel or capillary electrophoresis. The entire protocol can be performed in less than a day and is suitable for automated and high-throughput procedures.
Site-directed mutagenesis and polymerase chain reaction (PCR)-based cloning are well-established methods carried out routinely in most modern molecular biology laboratories. Application of these methods requires confirmation of the DNA sequence of the target gene by sequencing of DNA purified from multiple colonies, a laborious process. We have developed an alternative approach to screen DNA amplified directly from colony DNA for both desired and undesired mutations. This approach is based on the use of a plant mismatch DNA endonuclease, Surveyor Nuclease, to directly screen clones derived by site-directed mutagenesis. We have also used this approach to identify error-free clones of three genes from celery cDNA produced by PCR and TOPO cloning. Sequence confirmation using Surveyor Nuclease provides a fast and simple approach to obtain desired clones from site-directed mutagenesis and PCR-based cloning methods without the necessity of sequencing DNAs purified from multiple clones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.