Cryptococcus neoformans is an opportunistic fungal pathogen with a defined sexual cycle for which genetic and molecular techniques are well developed. The entire genome sequence of one C. neoformans strain is nearing completion. The efficient use of this sequence is dependent upon the development of methods to perform more rapid genetic analysis including gene-disruption techniques. A modified PCR overlap technique to generate targeting constructs for gene disruption that contain large regions of gene homology is described. This technique was used to disrupt or delete more than a dozen genes with efficiencies comparable to those previously reported using cloning technology to generate targeting constructs. Moreover, it is shown that disruptions can be made using this technique in a variety of strain backgrounds, including the pathogenic serotype A isolate H99 and recently characterized stable diploid strains. In combination with the availability of the complete genomic sequence, this gene-disruption technique should pave the way for higher throughput genetic analysis of this important pathogenic fungus.
SummaryCell wall integrity is crucial for fungal growth, development and stress survival. In the model yeast Saccharomyces cerevisiae , the cell integrity Mpk1/Slt2 MAP kinase and calcineurin pathways monitor cell wall integrity and promote cell wall remodelling under stress conditions. We have identified the Cryptococcus neoformans homologue of the S. cerevisiae b -1,3-glucan synthase inhibitor), or FK506 (a calcineurin inhibitor), and mutants lacking Mpk1 display enhanced sensitivity to nikkomycin Z and caspofungin. Lastly, we show that calcineurin and Mpk1 play complementing roles in regulating cell integrity in C. neoformans . Our studies demonstrate that pharmacological inhibition of the cell integrity pathway would enhance the activity of antifungal drugs that target the cell wall.
The fungal pathogen Cryptococcus neoformans survives phagocytosis by macrophages and proliferates within, ultimately establishing latent infection as a facultative intracellular pathogen that can escape macrophage control to cause disseminated disease. This process is hypothesized to be important for C. neoformans pathogenesis; however, it is poorly understood how C. neoformans adapts to and overcomes the hostile intracellular environment of the macrophage. Using DNA microarray technology, we have investigated the transcriptional response of C. neoformans to phagocytosis by murine macrophages. The expression profiles of several genes were verified using quantitative reverse transcription-PCR and a green fluorescent protein reporter strain. Multiple membrane transporters for hexoses, amino acids, and iron were up-regulated, as well as genes involved in responses to oxidative stress. Genes involved in autophagy, peroxisome function, and lipid metabolism were also induced. Interestingly, almost the entire mating type locus displayed increased expression 24 h after internalization, suggesting an intrinsic connection between infection and the MAT locus. Genes in the Gpa1-cyclic AMP-protein kinase A pathway were also up-regulated. Both gpa1 and pka1 mutants were found to be compromised in macrophage infection, confirming the important role of this virulence pathway. A large proportion of the repressed genes are involved in ribosome-related functions, rRNA processing, and translation initiation/elongation, implicating a reduction in translation as a central response to phagocytosis. In summary, this gene expression profile allows us to interpret the adaptation of C. neoformans to the intracellular infection process and informs the search for genes encoding novel virulence attributes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.