The presence of metal artefacts in computed tomography (CT) create issues in radiation oncology. The loss of anatomical information and incorrect Hounsfield unit (HU) values produce inaccuracies in dose calculations, providing suboptimal patient treatment. Metal artefact reduction (MAR) algorithms were developed to combat these problems. This study provides a qualitative and quantitative analysis of the "Smart MAR" software (General Electric Healthcare, Chicago, IL, USA), determining its usefulness in a clinical setting. A detailed analysis was conducted using both patient and phantom data, noting any improvements in HU values and dosimetry with the GE-MAR enabled. This study indicates qualitative improvements in severity of the streak artefacts produced by metals, allowing for easier patient contouring. Furthermore, the GE-MAR managed to recover previously lost anatomical information. Additionally, phantom data showed an improvement in HU value with GE-MAR correction, producing more accurate point dose calculations in the treatment planning system. Overall, the GE-MAR is a useful tool and is suitable for clinical environments.
Purpose The use of three‐dimensional (3D) printing to develop custom phantoms for dosimetric studies in radiotherapy is increasing. The process allows production of phantoms designed to evaluated specific geometries, patients, or patient groups with a defining feature. The ability to print bone‐equivalent phantoms has, however, proved challenging. The purpose of this work was to 3D print a series of three similar spine phantoms containing no surgical implants, implants made of titanium, and implants made of carbon fiber, for future dosimetric and imaging studies. Phantoms were evaluated for (a) tissue and bone equivalence, (b) geometric accuracy compared to design, and (c) similarity to one another. Methods Sample blocks of PLA, HIPS, and StoneFil PLA‐concrete with different infill densities were printed to evaluate tissue and bone equivalence. The samples were used to develop CT to physical (PD) and effective relative electron density (REDeff) conversion curves and define the settings for printing the phantoms. CT scans of the printed phantoms were obtained to assess the geometry and densities achieved. Mean distance to agreement (MDA) and DICE coefficient (DSC) values were calculated between contours defining the different materials, obtained from design and like phantom modules. HU values were used to determine PD and REDeff and subsequently evaluate tissue and bone equivalence. Results Sample objects showed linear relationships between HU and both PD and REDeff for both PLA and StoneFil. The PD and REDeff of the objects calculated using clinical CT conversion curves were not accurate and custom conversion curves were required. PLA printed with 90% infill density was found to have a PD of 1.11 ± 0.03 g.cm−3 and REDeff of 1.04 ± 0.02 and selected for tissue‐ equivalent phantom elements. StoneFil printed with 100% infill density showed a PD of 1.35 ± 0.03 g.cm−3 and REDeff of 1.24 ± 0.04 and was selected for bone‐equivalent elements. Upon evaluation of the final phantoms, the PLA elements displayed PD in the range of 1.10 ± 0.03 g.cm−3–1.13 ± 0.03 g.cm−3 and REDeff in the range of 1.02 ± 0.03–1.06 ± 0.03. The StoneFil elements showed PD in the range of 1.43 ± 0.04 g.cm−3–1.46 ± 0.04 g.cm−3 and REDeff in the range of 1.31 ± 0.04–1.33 ± 0.04. The PLA phantom elements were shown to have MDA of ≤1.00 mm and DSC of ≥0.95 compared to design, and ≤0.48 mm and ≥0.91 compared like modules. The StoneFil elements displayed MDA values of ≤0.44 mm and DSC of ≥0.98 compared to design and ≤0.43 mm and ≥0.92 compared like modules. Conclusions Phantoms which were radiologically equivalent to tissue and bone were produced with a high level of similarity to design and even higher level of similarity of one another. When used in conjunction with the derived CT to PD or REDeff conversion curves they are suitable for evaluating the effects of spinal surgical implants of varying material of construction.
The study demonstrated that scatter dose to other patients in a neonatal unit is not significant, assuming the distance between adjacent cribs is in the order of 1 m. Transmission doses are also low provided the beam is fully intercepted by the cassette. For an average workload the dose received by imaging technologists would be small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.