KurzfassungDas induktive Anlassen bekommt aufgrund der kurzen Prozesszeiten und der dadurch wirtschaftlicheren Produktionsmöglichkeiten vor allem bei Stabmaterial eine immer größere Bedeutung. Allerdings kommt es durch die schnelle Erwärmung und die kurzen Haltedauern zu einer veränderten Ausscheidungskinetik und dadurch zu einem unterschiedlichen Härte-Anlass-Verhalten gegenüber einer konventionellen Wärmebehandlung. Des Weiteren tritt bei der induktiven Erwärmung das Problem des sogenannten “Skin-Effekts“ auf, welcher bei schlechter Prozesssteuerung zu einer überhöhten Randtemperatur, verglichen mit der im Kern, führt. Diese prozessbedingten Charakteristika erschweren das Verständnis der Auswirkung des Prozesses auf die Mikrostruktur des untersuchten Vergütungsstahles. Diese Arbeit möchte daher mithilfe eines kombinierten Ansatzes aus Experimenten an einer Laborinduktionsanlage und Simulationen mithilfe der Finite-Elemente-Methode (FEM) die Optimierung bzw. individuelle Feineinstellung von induktiven Anlassvorgängen für Stab-Geometrien aus dem betrachteten Werkstoff aufzeigen. Dazu wurde mittels FEM-Simulationen die zeitliche Entwicklung des Temperaturfeldes im Werkstück berechnet und diese mit experimentellen Resultaten zu Mikrostruktur, Härte und Zähigkeit in Verbindung gebracht.
Induction heating processes are of rising interest within the heat treating industry. Using inductive tempering, a lot of production time can be saved compared to a conventional tempering treatment. However, it is not completely understood how fast inductive processes influence the quenched and tempered microstructure and the corresponding mechanical properties. The aim of this work is to highlight differences between inductive and conventional tempering processes and to suggest a possible processing route which results in optimized microstructures, as well as desirable mechanical properties. Therefore, the present work evaluates the influencing factors of high heating rates to tempering temperatures on the microstructure as well as hardness and Charpy impact energy. To this end, after quenching a 50CrMo4 steel three different induction tempering processes are carried out and the resulting properties are subsequently compared to a conventional tempering process. The results indicate that notch impact energy raises with increasing heating rates to tempering when realizing the same hardness of the samples. The positive effect of high heating rate on toughness is traced back to smaller carbide sizes, as well as smaller carbide spacing and more uniform carbide distribution over the sample.
In this work, we present and test an approach based on an inverse model applicable to the control of induction heat treatments. The inverse model is comprised of a simplified analytical forward model trained with experiments to predict and control the temperature of a location in a cylindrical sample starting from any initial temperature. We solve the coupled nonlinear electromagnetic-thermal problem, which contains a temperature dependent parameter α to correct the electromagnetic field on the surface of a cylinder, and as a result effectively the modeled temperature elsewhere in the sample. A calibrated model to the measurement data applied with the process information such as the operating power level, current, frequency, and temperature provides the basic ingredients to construct an inverse model toolbox, which finally enables us to conduct experiments with more specific goals. The input set values of the power supply, i.e., the power levels in the test rig control system, are determined within an iterative framework to reach specific target temperatures in prescribed times. We verify the concept on an induction heating test rig and provide two examples to illustrate the approach. The advantages of the method lie in its simplicity, computationally cost effectiveness and independence of a prior knowledge of the internal structure of power supplies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.