The human premature aging disorder Werner syndrome (WS) is associated with a large number of symptoms displayed in normal aging. The WRN gene product, a DNA helicase, has been previously shown to unwind short DNA duplexes (<53 base pairs) in a reaction stimulated by single-stranded DNA-binding proteins. We have studied the helicase activity of purified WRN protein on a variety of DNA duplex substrates to characterize the unwinding properties of the enzyme in greater detail. WRN helicase can catalyze unwinding of long duplex DNA substrates up to 849 base pairs in a reaction dependent on human replication protein A (hRPA). Escherichia coli SSB and bacteriophage T4 gene 32 protein (gp32) completely failed to stimulate WRN helicase to unwind long DNA duplexes indicating a specific functional interaction between WRN and hRPA. So far, there have been no reports of any physical interactions between WRN helicase and other proteins. In support of the functional interaction, we demonstrate a direct interaction between WRN and hRPA by coimmunoprecipitation of purified proteins. The physical and functional interaction between WRN and hRPA suggests that the two proteins may function together in vivo in a pathway of DNA metabolism such as replication, recombination, or repair.
A human antibody facilitates opsonophagocytic killing, inhibits attachment of Pseudomonas aeruginosa, and exerts protective effects in several animal models of P. aeruginosa infection.
SummaryBariatric surgery is widely used to treat obesity and improves type 2 diabetes beyond expectations from the degree of weight loss. Elevated post-prandial concentrations of glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and insulin are widely reported, but the importance of GLP-1 in post-bariatric physiology remains debated. Here, we show that GLP-1 is a major driver of insulin secretion after bariatric surgery, as demonstrated by blocking GLP-1 receptors (GLP1Rs) post-gastrectomy in lean humans using Exendin-9 or in mice using an anti-GLP1R antibody. Transcriptomics and peptidomics analyses revealed that human and mouse enteroendocrine cells were unaltered post-surgery; instead, we found that elevated plasma GLP-1 and PYY correlated with increased nutrient delivery to the distal gut in mice. We conclude that increased GLP-1 secretion after bariatric surgery arises from rapid nutrient delivery to the distal gut and is a key driver of enhanced insulin secretion.
Nutrient excess, a major driver of obesity, diminishes hypothalamic responses to exogenously administered leptin, a critical hormone of energy balance. Here, we aimed to identify a physiological signal that arises from excess caloric intake and negatively controls hypothalamic leptin action. We found that deficiency of the gastric inhibitory polypeptide receptor (
Gipr
) for the gut-derived incretin hormone GIP protected against diet-induced neural leptin resistance. Furthermore, a centrally administered antibody that neutralizes GIPR had remarkable antiobesity effects in diet-induced obese mice, including reduced body weight and adiposity, and a decreased hypothalamic level of SOCS3, an inhibitor of leptin actions. In contrast, centrally administered GIP diminished hypothalamic sensitivity to leptin and increased hypothalamic levels of
Socs3
. Finally, we show that GIP increased the active form of the small GTPase Rap1 in the brain and that its activation was required for the central actions of GIP. Altogether, our results identify GIPR/Rap1 signaling in the brain as a molecular pathway linking overnutrition to the control of neural leptin actions.
Background: GIPr mediates insulin secretion upon GIP stimulation.Results: Gipg013 is a highly specific and potent antagonist of GIPr with a fully characterized mode of action.Conclusion: Gipg013 antagonizes GIPr in vivo, as exemplified by inhibition of GIP-induced insulin secretion.Significance: This antagonizing antibody to the GIPr will be useful as a tool to further understand the biological roles of GIP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.