The evaluation of mixing quality is an important factor for improving the geometry of stirred-tank reactors and impellers used in bioprocess engineering applications, such as the enzymatic hydrolysis of plant materials. Homogeneity depends on different factors, including the stirrer type and the reactor type (e.g., ratio of diameter/height, ratio of impeller tip diameter/reactor diameter) with or without baffles. This study compares two impellers for enzymatic hydrolysis of suspensions of biomass particles on a milliliter scale. Both impellers were derived from industrially relevant geometries, such as blade and grid stirrers, although the geometry of the second stirrer was slightly modified to an asymmetric shape. The stirrers were investigated with different stirrer-reactor configurations. This was done experimentally and with the aid of computational fluid dynamics. The flow field, mixing numbers, power characteristics and initial conversion rates of sugars were considered to compare the two stirrers. The simulated mixing numbers and power characteristics in baffled and unbaffled milliliter-scale reactors were found to be in good agreement with the measured mixing times and power consumption. The mixing numbers required to reach homogeneity were much higher for the symmetric impeller and remained at least twice as high as the mixing numbers required when using the asymmetric impeller. The highest initial sugar releases from milled corn stover suspensions were achieved with the asymmetric impeller shape. Regardless of the differences in the flow fields or mixing times, diverging enzymatic sugar releases could be confirmed for Newtonian media only.
Ejector loop reactors (ELR) are successfully used in industrial chemical processes for gas/liquid reactions. They achieve higher mass transfer rates compared to the stirred‐tank reactor (STR) at comparable specific power input. Insufficient oxygen transport and shear stress induced growth inhibition are limiting parameters during microbial fermentation. Due to its better mass transfer characteristics, the ELR was expected to have beneficial effects on biomass and recombinant protein production. One concern, however, was whether the ELR's shear stress characteristics would have a negative effect. This study evaluated the suitability of using the Buss‐Loop® Reactor (BLR), one of the most advanced ELR technologies, as a bioreactor. The well‐studied STR was used as a reference. A lab scale BLR was adapted for microbial fermentation. Mass transfer rates and specific power inputs were within the same order of magnitude in the ELR and the reference STR. Maximum kLa values of 207 and 205 h−1 at power inputs of 6.9 and 9.7 W/L were measured in the ELR and STR, respectively. During batch fermentation of Escherichia coli K12 MG1655, maximum cell densities were higher in the ELR (OD600 of 22) than in the STR (OD600 of 18). Green fluorescence protein (GFP) production with pGS1 was comparable; however, more GFP was released into the media in the ELR. This indicates higher cell disruption compared to the STR. Despite this drawback of the first prototype, our work clearly demonstrates the potential of the ELR as a system for microbial fermentations.
The use of continuous flow microreactors offers an interesting approach among the process intensification tools available. Fouling in a microreactor during synthesis of industrially relevant nanoparticles was investigated. In order to achieve this, microscale synthesis of phosphated TiO 2 nanoparticles from titanium(IV) isopropoxide (TTIP) and titanium(IV) butoxide (TBUT) was employed. A continuous three step process, consisting of hydrolysis of the respective alkoxide, phosphate modification and precipitation was developed. The resulting catalyst was characterized by means of nitrogen adsorption, dynamic light scattering and SEM/EDX. It was observed that TTIP resulted in massive fouling, while a stable process was possible with TBUT. This was related to the nucleation time of the particles. The particle size directly after the critical hydrolysis step was investigated. The particles formed with TTIP as a precursor (3.4 nm) were larger than those obtained from TBUT (2.4 nm). Diffusion based reactant concentration gradients within the multilamellar micromixer were calculated, and the corresponding Damköhler numbers for mixing were estimated to be 2.6•10 −3 for TBUT and 3.5•10 −2 for TTIP respectively. These numbers highlight the influence of incomplete mixing on fouling for TTIP as a precursor. Thus, our work demonstrates the necessity to consider the reaction kinetics during process intensification by miniaturization.
Highly efficient TiO2 based catalysts for biomass conversion were obtained through optimised and well-controlled sol–gel synthesis in a multi-mixer microreactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.