Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.
Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of state-of-the-art techniques for visualizing different kinds of set relations. We classify these techniques into six main categories according to the visual representations they use and the tasks they support. We compare the categories to provide guidance for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area that need further research and propose possible directions to address these challenges. Further resources on set visualization are available at http://www.setviz.net.
Abstract-This paper describes an automatic mechanism for drawing metro maps. We apply multicriteria optimization to find effective placement of stations with a good line layout and to label the map unambiguously. A number of metrics are defined, which are used in a weighted sum to find a fitness value for a layout of the map. A hill climbing optimizer is used to reduce the fitness value, and find improved map layouts. To avoid local minima, we apply clustering techniques to the map -the hill climber moves both stations and clusters when finding improved layouts. We show the method applied to a number of metro maps, and describe an empirical study that provides some quantitative evidence that automatically-drawn metro maps can help users to find routes more efficiently than either published maps or undistorted maps. Moreover, we found that, in these cases, study subjects indicate a preference for automatically-drawn maps over the alternatives.
Euler diagrams are effective tools for visualizing set intersections. They have a large number of application areas ranging from statistical data analysis to software engineering. However, the automated generation of Euler diagrams has never been easy: given an abstract description of a required Euler diagram, it is computationally expensive to generate the diagram. Moreover, the generated diagrams represent sets by polygons, sometimes with quite irregular shapes that make the diagrams less comprehensible. In this paper, we address these two issues by developing the theory of piercings, where we define single piercing curves and double piercing curves. We prove that if a diagram can be built inductively by successively adding piercing curves under certain constraints, then it can be drawn with circles, which are more esthetically pleasing than arbitrary polygons. The theory of piercings is developed at the abstract level. In addition, we present a Java implementation that, given an inductively pierced abstract description, generates an Euler diagram consisting only of circles within polynomial time.
This paper presents the first design principles that optimize the visualization of sets using linear diagrams. These principles are justified through empirical studies that evaluate the impact of graphical features on task performance. Linear diagrams represent sets using straight line segments, with line overlaps corresponding to set intersections. This work builds on recent empirical research which establishes that linear diagrams can be superior to prominent set visualization techniques, namely Euler and Venn diagrams. We address the problem of how to best visualize overlapping sets using linear diagrams. To solve the problem, we investigate which graphical features of linear diagrams significantly impact user task performance. To this end, we conducted seven crowd-sourced empirical studies involving a total of 1760 participants. These studies allowed us to identify the following design principles, which significantly aid task performance: use a minimal number of line segments, use guide-lines where overlaps start and end, and draw lines that are thin as opposed to thick bars. We also evaluated the following graphical properties which did not significantly impact task performance: colour, orientation, and set-order. The results are brought to life through a freely available software implementation that automatically draws linear diagrams with user-controlled graphical choices. An important consequence of our research is that users are now able to create effective visualizations of sets automatically, thus improving human-computer interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.