A squaramide ester derivative of desferrioxamine B (HDFO) that is compatible with aqueous solvents and does not induce antibody aggregation is used to attach the siderophore to the antibody trastuzumab. The new conjugates were radiolabeled with zirconium-89 to give complexes that are more resistant to ligand exchange when compared to currently used HDFO derivatives and result in high quality positron emission tomography images in mouse models of HER2 positive breast cancer.
One of the pathological hallmarks of Alzheimer's disease is the presence of amyloid-β plaques in the brain and the major constituent of these plaques is aggregated amyloid-β peptide. New thiosemicarbazone-pyridylhydrazine based ligands that incorporate functional groups designed to bind amyloid-β plaques have been synthesized. The new ligands form stable four coordinate complexes with a positron-emitting radioactive isotope of copper, (64)Cu. Two of the new Cu(II) complexes include a functionalized styrylpyridine group and these complexes bind to amyloid-β plaques in samples of post-mortem human brain tissue. Strategies to increase brain uptake by functional group manipulation have led to a (64)Cu complex that effectively crosses the blood-brain barrier in wild-type mice. The new complexes described in this manuscript provide insight into strategies to deliver metal complexes to amyloid-β plaques.
The use of copper radioisotopes in cancer diagnosis and radionuclide therapy is possible using chelators that are capable of binding Cu(II) with sufficient stability in vivo to provide high tumour-to-background contrast. Here we report the design and synthesis of a new bifunctional chelator, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid (MeCOSar), that forms copper complexes of exceptional stability by virtue of a cage amine (sarcophagine) ligand and a new conjugate referred to as SarTATE, obtained by the conjugation of MeCOSar to the tumour-targeting peptide Tyr(3)-octreotate. Radiolabeling of SarTATE with (64)Cu(II), a radioisotope suitable for positron emission tomography (PET), was fast (~20 min), easily performed at room temperature and consistently resulted in high radiochemical purity (>99%). In vitro and in vivo evaluation of (64)CuSarTATE demonstrated its high selectivity for tumour cells expressing somatostatin receptor 2 (sstr2). Biodistribution and PET imaging comparisons were made between (64)CuSarTATE and (64)Cu-labeled DOTA-Tyr(3)-octreotate ((64)CuDOTATATE). Both radiopharmaceuticals showed excellent uptake in sstr2-positive tumours at 2 h post-injection. While tumour uptake of (64)CuDOTATATE decreased significantly at 24 h, (64)CuSarTATE activity was retained, improving contrast at later time points. (64)CuSarTATE accumulated less than (64)CuDOTATATE in the non-target organs, liver and lungs. The uptake of (64)CuSarTATE in the kidneys was high at 2 h but showed significant clearance by 24 h. The new chemistry and pre-clinical evaluation presented here demonstrates that MeCOSar is a promising bifunctional chelator for Tyr(3)-octreotate that could be applied to a combined imaging and therapeutic regimen using a combination of (64)Cu- and (67)CuSarTATE complexes, owing to improved tumour-to-non-target organ ratios compared to (64)CuDOTATATE at longer time points.
Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with 68Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced 68Ga3+ in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60–80 MBq nmol–1. Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new 68Ga3+-labeled THP peptide conjugates retain affinity for the αvβ3 integrin receptor, clear within 1–2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of 68Ga biomolecules under mild conditions suitable for peptides and proteins.
The aim of this study was to evaluate the novel probe 18 F-6-fluoro-N-[2-(diethylamino)ethyl] pyridine-3-carboxamide ( 18 F-MEL050) for the imaging of primary and metastatic melanoma. Methods: PET using 18 F-MEL050 was performed in murine models of melanoma. The specificity of 18 F-MEL050 was studied by comparing its accumulation in pigmented B16-F0 allograft tumors with that of human amelanotic A375 xenografts using PET and high-resolution autoradiography. 18 F-MEL050 PET results were compared with 18 F-FDG PET, the current standard in melanoma molecular imaging. To test the ability of 18 F-MEL050 to assess the metastatic spread of melanoma, a murine model of lung metastasis was imaged by PET/CT, and results correlated with physical assessment of tumor burden in the lungs. Results: In pigmented B16-F0 grafts, 18 F-MEL050 PET yielded a tumor-to-background ratio of approximately 20:1 at 1 h and greater than 50:1 at 2 and 3 h. In the B16-F0 melanoma allograft model, tumor-to-background ratio was more than 9-fold higher for 18 F-MEL050 than for 18 F-FDG (50.9 6 6.9 vs. 5.8 6 0.5). No uptake was observed in the amelanotic melanoma xenografts. Intense uptake of 18 F-MEL050 was evident in metastatic lesions in the lungs of B16-BL6 tumor-bearing mice on PET at 2 h after tracer injection, with high concordance between 18 F-MEL050 accumulation on PET/CT and tumor burden determined at necroscopy. Conclusion: 18 F-MEL050 has a rapid tumor uptake and high retention with specificity for melanin, suggesting great potential for noninvasive clinical evaluation of suspected metastatic melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.