High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys. The ISME Journal (2017) 11, 584-587; doi:10.1038/ismej.2016 published online 9 September 2016 Recent advancements in high-throughput sequencing of marker genes, such as the 16S rRNA gene, have provided microbial ecologists the tools to accurately infer the relative composition of microbial communities (Franzosa et al., 2015). This resulted in a widespread application of the technology in longitudinal studies where shifts in community structure are related to environmental variables and functional outputs (Faust et al., 2015;Wilhelm et al., 2015). An inherent limitation of the sequencing technology is that the calculated taxon abundances comprise relative values (Widder et al., 2016). Hence, caution must be taken with the biological interpretation of these values, since inter-sample differences in cell density are not considered. To our knowledge, there are no descriptive studies that assess the extent to which relative abundances deliver a skewed image of the actual microbial community dynamics. In this study, we combined robust cell density measurements from flow cytometry (Prest et al., 2013;Van Nevel et al., 2013) with the relative abundances derived from 16S rRNA gene amplicon sequencing. We performed two extensive longitudinal surveys on the central water reservoir of a cooling water system. This engineered freshwater ecosystem was subjected to highly controlled operational phases (Supplementary Information and data set). We quantified the absolute taxon abundances and assessed whether additional insights could be attained with the combined approach.Based on the sample-specified total cell density, the absolute taxon abundances were calculated for each time point. Individual taxon densities ranged from 0.5 to 1 679 cells per μl. Several inter-taxon differences became apparent by performing ordinary least squares regression analysis between the relative and absolute abundances. We focused on the three most abundant taxa, which ...
Bacterial cells can be characterized in terms of their cell properties using flow cytometry. Flow cytometry is able to deliver multiparametric measurements of up to 50,000 cells per second. However, there has not yet been a thorough survey concerning the identification of the population to which bacterial single cells belong based on flow cytometry data. This paper not only aims to assess the quality of flow cytometry data when measuring bacterial populations, but also suggests an alternative approach for analyzing synthetic microbial communities. We created so-called in silico communities, which allow us to explore the possibilities of bacterial flow cytometry data using supervised machine learning techniques. We can identify single cells with an accuracy >90% for more than half of the communities consisting out of two bacterial populations. In order to assess to what extent an in silico community is representative for its synthetic counterpart, we created so-called abundance gradients, a combination of synthetic (i.e., in vitro) communities containing two bacterial populations in varying abundances. By showing that we are able to retrieve an abundance gradient using a combination of in silico communities and supervised machine learning techniques, we argue that in silico communities form a viable representation for synthetic bacterial communities, opening up new opportunities for the analysis of synthetic communities and bacterial flow cytometry data in general.
In diagnostics of infectious diseases, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) can be applied for the identification of pathogenic microorganisms. However, to achieve a trustworthy identification from MALDI-TOF MS data, a significant amount of biomass should be considered. The bacterial load that potentially occurs in a sample is therefore routinely amplified by culturing, which is a time-consuming procedure. In this paper, we show that culturing can be avoided by conducting MALDI-TOF MS on individual bacterial cells. This results in a more rapid identification of species with an acceptable accuracy. We propose a deep learning architecture to analyze the data and compare its performance with traditional supervised machine learning algorithms. We illustrate our workflow on a large data set that contains bacterial species related to urinary tract infections. Overall we obtain accuracies up to 85% in discriminating five different species.
Isogenic bacterial populations are known to exhibit phenotypic heterogeneity at the single-cell level. Because of difficulties in assessing the phenotypic heterogeneity of a single taxon in a mixed community, the importance of this deeper level of organization remains relatively unknown for natural communities. In this study, we have used membrane-based microcosms that allow the probing of the phenotypic heterogeneity of a single taxon while interacting with a synthetic or natural community. Individual taxa were studied under axenic conditions, as members of a coculture with physical separation, and as a mixed culture. Phenotypic heterogeneity was assessed through both flow cytometry and Raman spectroscopy. Using this setup, we investigated the effect of microbial interactions on the individual phenotypic heterogeneities of two interacting drinking water isolates. Through flow cytometry we have demonstrated that interactions between these bacteria lead to a reduction of their individual phenotypic diversities and that this adjustment is conditional on the bacterial taxon. Single-cell Raman spectroscopy confirmed a taxondependent phenotypic shift due to the interaction. In conclusion, our data suggest that bacterial interactions may be a general driver of phenotypic heterogeneity in mixed microbial populations. IMPORTANCE Laboratory studies have shown the impact of phenotypic heterogeneity on the survival and functionality of isogenic populations. Because phenotypic heterogeneity plays an important role in pathogenicity and virulence, antibiotic resistance, biotechnological applications, and ecosystem properties, it is crucial to understand its influencing factors. An unanswered question is whether bacteria in mixed communities influence the phenotypic heterogeneity of their community partners. We found that coculturing bacteria leads to a reduction in their individual phenotypic heterogeneities, which led us to the hypothesis that the individual phenotypic diversity of a taxon is dependent on the community composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.