Deep Impact?
On 15 February 2013, the Russian district of Chelyabinsk, with a population of more than 1 million, suffered the impact and atmospheric explosion of a 20-meter-wide asteroid—the largest impact on Earth by an asteroid since 1908.
Popova
et al.
(p.
1069
, published online 7 November; see the Perspective by
Chapman
) provide a comprehensive description of this event and of the body that caused it, including detailed information on the asteroid orbit and atmospheric trajectory, damage assessment, and meteorite recovery and characterization.
Abstract-The Novato L6 chondrite fragmental breccia fell in California on 17 October 2012, and was recovered after the Cameras for Allsky Meteor Surveillance (CAMS) project determined the meteor's trajectory between 95 and 46 km altitude. The final fragmentation from 42 to 22 km altitude was exceptionally well documented by digital photographs. The first sample was recovered before rain hit the area. First results from a consortium study of the meteorite's characterization, cosmogenic and radiogenic nuclides, origin, and conditions of the fall are presented. Some meteorites did not retain fusion crust and show evidence of spallation. Before entry, the meteoroid was 35 AE 5 cm in diameter (mass 80 AE 35 kg) with a cosmic-ray exposure age of 9 AE 1 Ma, if it had a one-stage exposure history. A two-stage exposure history is more likely, with lower shielding in the last few Ma. Thermoluminescence data suggest a collision event within the last $ 0.1 Ma. Novato probably belonged to the class of shocked L chondrites that have a common shock age of 470 Ma, based on the U,Th-He age of 420 AE 220 Ma. The measured orbits of Novato, Jesenice, and Innisfree are consistent with a proposed origin of these shocked L chondrites in the Gefion asteroid family, perhaps directly via the 5:2 mean-motion resonance with Jupiter. Novato experienced a stronger compaction than did other L6 chondrites of shockstage S4. Despite this, a freshly broken surface shows a wide range of organic compounds.
It has recently been shown by Egal et al. (2017) that some types of existing meteor in-atmosphere trajectory estimation methods may be less accurate than others, particularly when applied to high precision optical measurements. The comparative performance of trajectory solution methods has previously only been examined for a small number of cases. Besides the radiant, orbital accuracy depends on the estimation of pre-atmosphere velocities, which have both random and systematic biases. Thus it is critical to understand the uncertainty in velocity measurement inherent to each trajectory estimation method.In this first of a series of two papers, we introduce a novel meteor trajectory estimation method which uses the observed dynamics of meteors across stations as a global optimization function and which does not require either a theoretical or empirical flight model to solve for velocity. We also develop a 3D observational meteor trajectory simulator that uses a meteor ablation model to replicate the dynamics of meteoroid flight, as a means to validate different trajectory solvers.We both test this new method and compare it to other methods, using synthetic meteors from three major showers spanning a wide range of velocities and geometries (Draconids, Geminids, Perseids). We determine which meteor trajectory solving algorithm performs better for: all-sky, moderate field of view, and high-precision narrowfield optical meteor detection systems. The results are presented in the second paper in this series. Finally, we give detailed equations for estimating meteor trajectories and analytically computing meteoroid orbits, and provide the Python code of the methodology as open source software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.