Ocean Drilling Program Leg 176 deepened Hole 735B in gabbroic lower ocean crust by 1 km to 1.5 km. The section has the physical properties of seismic layer 3, and a total magnetization sufficient by itself to account for the overlying lineated sea-surface magnetic anomaly. The rocks from Hole 735B are principally olivine gabbro, with evidence for two principal and many secondary intrusive events. There are innumerable late small ferrogabbro intrusions, often associated with shear zones that cross-cut the olivine gabbros. The ferrogabbros dramatically increase upward in the section. Whereas there are many small patches of ferrogabbro representing late iron-and titanium-rich melt trapped intragranularly in olivine gabbro, most late melt was redistributed prior to complete solidification by compaction and deformation. This, rather than in situ upward differentiation of a large magma body, produced the principal igneous stratigraphy. The computed bulk composition of the hole is too evolved to mass balance mid-ocean ridge basalt back to a primary magma, and there must be a significant mass of missing primitive cumulates. These could lie either below the hole or out of the section. Possibly the gabbros were emplaced by along-axis intrusion of moderately differentiated melts into the near-transform environment. Alteration occurred in three stages. High-temperature granulite-to amphibolite-facies alteration is most important, coinciding with brittle^ductile deformation beneath the ridge. Minor greenschist-facies alteration occurred under largely static conditions, likely during block uplift at the ridge transform intersection. Late post-uplift lowtemperature alteration produced locally abundant smectite, often in previously unaltered areas. The most important features of the high-and low-temperature alteration are their respective associations with ductile and cataclastic deformation, and an overall decrease downhole with hydrothermal alteration generally 95% in the bottom kilometer. Hole 735B provides evidence for a strongly heterogeneous lower ocean crust, and for the inherent interplay of deformation, alteration and igneous processes at slow-spreading ridges. It is strikingly different from gabbros sampled from fast-spreading ridges and at most well-described ophiolite complexes. We attribute this to the remarkable diversity of tectonic environments where crustal accretion occurs in the oceans and to the low probability of a section of old slow-spread crust formed near a major large-offset transform being emplaced onland compared to sections of young crust from small ocean basins.
We redescribed the~0.5-km gabbro section drilled in Hole 735B at the Ocean Drilling Program Gulf Coast Repository. Included in this work was a redivision and clarification of the location and nature of the major lithologic boundaries and a division of the major units into subunits. In all, we found 495 distinct lithologic intervals in the core. Most of the section consists of a single olivine gabbro body having only minor cryptic variations, which we think represents a small intrusion. At the top of the section, the olivine gabbro is intercalated with a medium-to coarse-grained gabbronorite, which we postulate was intruded by the olivine gabbro. The base of the olivine gabbro has been intruded by troctolites and troctolitic gabbros, which may be the precursors of a major troctolite intrusive body immediately below the base of the hole. This section is variously crosscut by small microgabbro bodies, which are the products of crystallization and wall-rock reaction of small magma bodies that migrated through the olivine gabbro prior to complete solidification. Overall, the plutonic section drilled in Hole 735B is unlike those found at layered intrusions as it lacks evidence for extensive magmatic sedimentation. Rather, it appears to represent a plutonic basement composed of small, relatively short-lived, rapidly crystallized intrusions. This is consistent with the ephemeral volcanism and low rates of magma supply postulated for very slow-spreading ocean ridges. This whole section underwent "syntectonic differentiation": a process in which deformation and compaction of a rigid, partially molten gabbro drove intercumulus melt out of the olivine gabbro into ductile shear zones. Chemical exchange, precipitation of oxides, and trapping of the migrating melt at the end of deformation altered the gabbro in the shear zones to ferrogabbro. These oxide-rich horizons have the potential to be major shallow-dipping seismic reflectors. The largest such zone is 103 m thick and consists of foliated disseminated oxide olivine and oxide olivine gabbros of lithologic Units III and IV. The last igneous event was back-intrusion of trondhjemite veins that formed either by fractional crystallization from the interstitial melt and/or by wall rock anatexis of intruded amphibolites. Alteration and relatively rapid cooling of the gabbro body occurred by penetration and circulation of seawater into the plutonic section caused by thermal contraction and cracking under tensile stress, much as envisaged by Lister (1970). Initially, this circulation was greatly enhanced tectonically by the tensile component provided by lithospheric necking and the formation of brittle-ductile faults beneath the median valley. This circulation was sufficiently pervasive to alter about 25% of all the matrix pyroxene in the body, mostly to amphibole, in the amphibolite facies. Alteration was heaviest in the vicinity of the brittle-ductile faults, where formation of crack networks, cataclasis, and granulation were ongoing processes continuously creating porosity and p...
SeaBeam echo sounding, seismic reflection, magnetics, and gravity profiles were run along closely spaced tracks (5 km) parallel to the Atlantis II Fracture Zone on the Southwest Indian Ridge, giving 80% bathymetric coverage of a 30-× 170-nmi strip centered over the fracture zone. The southern and northern rift valleys of the ridge were clearly defined and offset north-south by 199 km. The rift valleys are typical of those found elsewhere on the Southwest Indian Ridge, with relief of more than 2200 m and widths from 22 to 38 km. The ridge-transform intersections are marked by deep nodal basins lying on the transform side of the neovolcanic zone that defines the present-day spreading axis. The walls of the transform generally are steep (25°-40°), although locally, they can be more subdued. The deepest point in the transform is 6480 m in the southern nodal basin, and the shallowest is an uplifted wave-cut terrace that exposes plutonic rocks from the deepest layer of the ocean crust at 700 m. The transform valley is bisected by a 1.5-km-high median tectonic ridge that extends from the northern ridge-transform intersection to the midpoint of the active transform. The seismic survey showed that the floor of the transform contains up to 0.5 km of sediment. Piston-coring at two locations on the transform floor recovered more than 1 m of sand and gravel, which appears to be turbidites shed from the walls of the fracture zone. Extensive dredging showed that more than two-thirds of the crust exposed in the transform valley and its walls were plutonic rocks, principally gabbros and residual mantle peridotites. In contrast, based on dredging and seafloor morphology, only relatively undisrupted pillow basalt flows have been exposed on crust of the same age spreading away from the transform. Magnetic anomalies are well defined out to 11 m.y. over the flanking transverse ridges and transform valley, even where layer 2 appears to be absent. The total opening rate is 1.6 cm/yr, but the arrangement of the anomalies indicates that the spreading for each ridge is asymmetric, with the ridge flanks facing the transform spreading at a rate of 1.0 cm/yr. Such an asymmetric spreading pattern requires that both the northern and southern ridges migrate away from each other at 0.2 cm/yr, thus lengthening the transform at 0.4 cm/yr for the last 11 m.y. To the north, the fracture zone valley is oriented differently from the present-day transform, indicating a paleospreading direction change at 17 m.y. from N10°E to due north-south. This change placed the transform into extension for the 11-m.y. period required for simple orthogonal ridge-transform geometry to be reestablished and produced a large transtensional basin within the transform valley. This basin was split by continued transform slip after 11 m.y., with the larger half moving to the north with the African Plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.