Hfq and other Sm proteins are central in RNA metabolism, forming an evolutionarily conserved family that plays key roles in RNA processing in organisms ranging from archaea to bacteria to human. Sm-based cellular pathways vary in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in each of these pathways being mediated by an RNA-associated molecular assembly built upon Sm proteins. Though the first structures of Sm assemblies were from archaeal systems, the functions of Sm-like archaeal proteins (SmAPs) remain murky. Our ignorance about SmAP biology, particularly vis-à-vis the eukaryotic and bacterial Sm homologs, can be partly reduced by leveraging the homology between these lineages to make phylogenetic inferences about Sm functions in archaea. Nevertheless, whether SmAPs are more eukaryotic (RNP scaffold) or bacterial (RNA chaperone) in character remains unclear. Thus, the archaeal domain of life is a missing link, and an opportunity, in Sm-based RNA biology.
We present solid-state NMR measurements of β-strand secondary structure and inter-strand organization within a 150 kDa oligomeric aggregate of the 42-residue variant of the Alzheimer's amyloid-β peptide ). This oligomer is characterized by a structure that cannot be explained by any previously proposed model for aggregated Aβ. We build upon our previous report of a β-strand spanned by residues 30-42, which arranges into an antiparallel β-sheet. New results presented here indicate that there is a second β-strand formed by residues 11-24. We show negative results for NMR experiments designed to reveal antiparallel β-sheets formed by this β-strand. Remarkably, we show that this strand is organized into a parallel β-sheet despite the co-existence of an antiparallel β-sheet in the same structure. In addition, the inregister parallel β-sheet commonly observed for amyloid fibril structure does not apply to residues 11-24 in the 150 kDa oligomer. Rather, we present evidence for an inter-strand registry shift of 3 residues that alternates in direction between adjacent molecules along the β-sheet. We corroborated this unexpected scheme for β-strand organization using multiple 2-dimensional NMR and 13 C-13 C dipolar recoupling experiments. Our findings indicate a previously unknown assembly pathway and inspire a suggestion as to why this aggregate does not grow to larger sizes.
The structure of an Hfq homolog from the deep-branching thermophilic bacterium Aquifex aeolicus, determined to 1.5 Å resolution both in the apo form and bound to a uridine-rich RNA, reveals a conserved, pre-organized RNA-binding pocket on the lateral rim of the Hfq hexamer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.