Reconstructing the diets of extinct hominins is essential to understanding the paleobiology and evolutionary history of our lineage. Dental microwear, the study of microscopic tooth-wear resulting from use, provides direct evidence of what an individual ate in the past. Unfortunately, established methods of studying microwear are plagued with low repeatability and high observer error. Here we apply an objective, repeatable approach for studying three-dimensional microwear surface texture to extinct South African hominins. Scanning confocal microscopy together with scale-sensitive fractal analysis are used to characterize the complexity and anisotropy of microwear. Results for living primates show that this approach can distinguish among diets characterized by different fracture properties. When applied to hominins, microwear texture analysis indicates that Australopithecus africanus microwear is more anisotropic, but also more variable in anisotropy than Paranthropus robustus. This latter species has more complex microwear textures, but is also more variable in complexity than A. africanus. This suggests that A. africanus ate more tough foods and P. robustus consumed more hard and brittle items, but that both had variable and overlapping diets.
The Plio-Pleistocene hominin Paranthropus boisei had enormous, flat, thickly enameled cheek teeth, a robust cranium and mandible, and inferred massive, powerful chewing muscles. This specialized morphology, which earned P. boisei the nickname “Nutcracker Man”, suggests that this hominin could have consumed very mechanically challenging foods. It has been recently argued, however, that specialized hominin morphology may indicate adaptations for the consumption of occasional fallback foods rather than preferred resources. Dental microwear offers a potential means by which to test this hypothesis in that it reflects actual use rather than genetic adaptation. High microwear surface texture complexity and anisotropy in extant primates can be associated with the consumption of exceptionally hard and tough foods respectively. Here we present the first quantitative analysis of dental microwear for P. boisei. Seven specimens examined preserved unobscured antemortem molar microwear. These all show relatively low complexity and anisotropy values. This suggests that none of the individuals consumed especially hard or tough foods in the days before they died. The apparent discrepancy between microwear and functional anatomy is consistent with the idea that P. boisei presents a hominin example of Liem's Paradox, wherein a highly derived morphology need not reflect a specialized diet.
Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations. Since the discovery of Australopithecus afarensis, many researchers have emphasized the importance of bipedality in scenarios of human origins (1,2). Surprisingly, less attention has been focused on the role played by diet in the ecology and evolution of the early hominids (as usually received). Recent work in a broad range of disciplines, such as paleoenvironmental studies (3, 4), behavioral ecology (5), primatology (6), and isotope analyses (7), has rekindled interests in early hominid diets. Moreover, important new fossils from the early Pliocene raise major questions about the role of dietary changes in the origins and early evolution of the Hominidae (8-10). In short, we need to focus not just on how the earliest hominids moved between food patches, but also on what they ate when they got there.This paper presents a review of the fossil evidence for the diets of the Pliocene hominids Ardipithecus ramidus, Australopithecus anamensis, Australopithecus afarensis, and Australopithecus africanus. These hominids offer evidence for the first half of human evolution, from our split with prehistoric apes to the earliest members of our own genus, Homo. The taxa considered are viewed as a roughly linear sequence from Ardipithecus to A. africanus, spanning the time from 4.4 million to 2.5 million years ago. As such, they give us a unique opportunity to examine changes in dietary adaptations of our ancestors over nearly 2 million years. We also trace what has been inferred concerning the diets of the Miocene hominoids to put changes in Pliocene hominid diets into a broader temporal perspective. From such a perspective, it becomes clear that the dietary capabilities of the early hominids changed dramatically in the time period between 4.4 million and 2.3 million years ago. Most of the evidence has come from five sources: analyses of tooth size, tooth shape, enamel structure, dental microwear, and jaw biomechanics. Taken together, they suggest a dietary shift in the early australopithecines, to increased dietary flexibility in the face of climatic variability. Moreover, changes in diet-related adaptations from A. anamensis to A. afarensis to A. africanus suggest that hard, abrasive foods became increasingly important through the Pliocene, perhaps as critical items in the diet. Tooth SizeIn 1970, Jolly (11) noted that australopithec...
Worn teeth are a bane to paleobiologists interested in the diets of human ancestors and other fossil primates. Although worn teeth dominate fossil assemblages, their shapes are usually not used to reconstruct the diets of extinct species. The problem is that traditional studies of primate dental functional anatomy have focused on unworn morphology. This has limited most functional analyses to only a few well-represented fossil species. This paper introduces a method to characterize and compare worn occlusal morphology in primates using laser scanning and geographic information systems technologies. A study of variably worn chimpanzee and gorilla molars indicates that differences between these species in tooth shape remain consistent at given stages of wear. Although cusp slope decreases with wear in both taxa, angularity values remain unchanged. These results indicate that African ape teeth wear in a manner that keeps them mechanically efficient for fracturing specific foods. Studies of changes in tooth shape with wear add a new dimension to dental functional anatomy, and offer a more complete picture of dental-dietary adaptations. Also, given how rare unworn teeth are in the fossil record, the ability to include worn specimens in analyses opens the door to reconstructing the diets of many more extinct primate groups, allowing us to better understand the adaptive radiation of our order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.