The urban heat island effect has posed negative impacts on urban areas with increased cooling energy demand followed by an altered thermal environment. While unusually high temperature in urban areas has been often attributed to complex urban settings, the function of urban forests has been considered as an effective heat mitigation strategy. To investigate the cooling effect of urban forests and their influence range, this study examined the spatiotemporal changes in land surface temperature (LST) of urban forests and surrounding areas by using Landsat imageries. LST, the size of the urban forest, its vegetation cover, and Normalized Difference Vegetation Index (NDVI) were investigated for 34 urban forests and their surrounding areas at a series of buffer areas in Seoul, South Korea. The mean LST of urban forests was lower than that of the overall city, and the threshold distance from urban forests for cooling effect was estimated to be roughly up to 300 m. The group of large-sized urban forests showed significantly lower mean LST than that of small-sized urban forests. The group of urban forests with higher NDVI showed lower mean LST than that of urban forests with lower mean NDVI in a consistent manner. A negative linear relationship was found between the LST and size of urban forest (r = −0.36 to −0.58), size of vegetation cover (r = −0.39 to −0.61), and NDVI (r = −0.42 to −0.93). Temporal changes in NDVI were examined separately on a specific site, Seoul Forest, that has experienced urban forest dynamics. LST of the site decreased as NDVI improved by a land-use change from a barren racetrack to a city park. It was considered that NDVI could be a reliable factor for estimating the cooling effect of urban forest compared to the size of the urban forest and/or vegetation cover.
Many people visited urban parks during the COVID-19 pandemic to reduce the negative effects of lack of physical activity, social isolation, anxiety, and depression. It is unclear whether all parks are robust against the pandemic, helping people sustain healthy daily living through the diverse activities within them. Nevertheless, few studies have identified the specific relationship between park visits and the COVID-19 pandemic. Therefore, this study aims to demonstrate how physical features such as type, functionality, and access influenced daily visiting to parks during the pandemic, using mobile phone data at a micro level. This study first classified urban parks as point-type parks with an area of less than 1 ha, plane-type parks with 1 ha or more, and line-type parks with elongated shapes, while measuring accessibility to residential, employment, transportation, and auxiliary facilities within the park. The study employed the multi-level regression model with random intercept to investigate the effects of differing park visits, focusing on Goyang city, South Korea. Our analysis results identified that easy access from home was more important than the park size during the pandemic. If we look at the types of parks, the use of both plane- and point-type parks increased more than that of line-type parks. However, line-type parks near homes, along with shopping and sports facilities, were found to be more robust to the pandemic. These findings can be informative to provide specific guidelines to fulfill the enhanced role of parks in sustaining public health during an infectious disease pandemic that may strike again.
Nursery practices are considered major factors influencing seedling quality, which are likely to be maintained in the early establishment phase in the field. Here, we investigated the effects of container depth and substrate heterogeneity on the growth of Populus sibirica nodal seedlings to suggest an effective nursery practice for producing quality seedlings appropriate for forest establishment in a dry environment. We used two substrate heterogeneities (homogeneous and heterogeneous) and two container depth treatments (30 and 60 cm). Variations in root collar diameter (RCD) growth, height growth, stem and root biomass, root to stem ratio, and root mass in the first 15 cm depth from the soil surface across the treatments were computed. Results revealed that both substrate heterogeneity and container depth had no significant effects on the RCD and height growth of P. sibirica seedlings but significantly improved their root and stem biomass. Seedlings in the 60 cm containers generally accumulated higher root biomass than those in the 30 cm containers. There was an interaction effect of container depth and substrate heterogeneity treatments on root and total dry mass, such that seedlings grown in the 60 cm container using heterogeneous substrate resulted in the highest root and total biomass. Analyses of proportional root growth in the upper 15 cm of the containers compared to the total indicated that both the main effects of deeper containers (60 cm) and heterogeneous substrate have fewer roots at this depth, indicating a greater root density in the bottom of the deeper containers. Therefore, deeper containers and heterogeneous substrate may be used as an effective nursery practice to produce seedlings with root traits potentially suitable for harsh conditions, such as arid and semi-arid environments. However, further studies using other seedling morphological traits in conjunction with field-trial tests are needed for a definitive assessment of the effectiveness of deeper containers and heterogeneous substrate in producing good quality seedlings potentially suitable in a dry environment.
Abstract:The consistent demand for development of forest lands in South Korea has resulted in the need for a new approach to estimate environmental impacts in order to sustainably manage forests. In this study, two types of development were selected: golf courses and industrial complexes. Using FRAGSTATS ver. 4.2 (University of Massachussetts, Amherst, MA, USA), the fragmentation effects of each development type were analyzed based on forest area within project sites and buffer zones ranging up to 2000 m. Each type had representative landscape metrics reflecting the average impact ranges by forest area: "Number of Patches", "Patch Density" and "Total Edge Length" for golf courses; "Number of Patches", "Patch Density" and "Connectance Index" for industrial complexes. Golf courses with the smallest forest area had a larger impact range than those with larger forest areas. For industrial complexes, the impact range increased with forest area. Although individual sites exhibited some variation in impact range, they were generally consistent with the overall patterns observed. Investigating tree growth by buffer zone showed the ecological effect of development. To comprehensively manage development of forest lands, further research on other development types is needed. These results could be useful for creating a decision-making system with regard to development on forest lands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.