A large-scale groundwater flow and transport model is developed for a deep-seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three-dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of (39)Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two-dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep-seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers.
Intense investigations of deep aquifers in Jylland, western Denmark, during the last seven years have resulted in de tailed mapping of Miocene sand-rich deposits laid down in fluvial channels, delta lobes, shoreface and spit complexes (Fig. 1; Rasmussen 2004). Detailed sedimentological and paly nol ogical studies of outcrops and cores, and interpretation of high-resolution seismic data, have resulted in a well-founded sequence-stratigraphic and lithostratigraphic scheme (Fig. 1) suitable for prediction of the distribution of sand. The Miocene succession onshore Denmark is divided into three sand-rich deltaic units: the Ribe and Bastrup sands and the Odderup Formation (Fig. 2). Prodeltaic clayey deposits of the Vejle Fjord and Arnum Formations interfinger with the sand-rich deposits. Most of the middle and upper Mio- cene in Denmark is composed of clayey sediments referred to the Hodde and Gram Formations (Fig. 2). This paper presents examples of seismic reflection patterns that have proved to correlate with sand-rich deposits from lower Miocene deltaic deposits and that could be applied in future exploration for aquifers and as analogues for oil- and gas-bearing sands in wave-dominated deltas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.